Defining parameters
| Level: | \( N \) | \(=\) | \( 245 = 5 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 245.c (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(84\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(245, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 64 | 44 | 20 |
| Cusp forms | 48 | 36 | 12 |
| Eisenstein series | 16 | 8 | 8 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(245, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 245.3.c.a | $12$ | $6.676$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{2}+\beta _{9}q^{3}+(-1+\beta _{1})q^{4}+(-\beta _{5}+\cdots)q^{5}+\cdots\) |
| 245.3.c.b | $24$ | $6.676$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{3}^{\mathrm{old}}(245, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(245, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)