Defining parameters
| Level: | \( N \) | \(=\) | \( 24200 = 2^{3} \cdot 5^{2} \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 24200.bj (of order \(10\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 275 \) |
| Character field: | \(\Q(\zeta_{10})\) | ||
| Sturm bound: | \(7920\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(24200, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 16032 | 3240 | 12792 |
| Cusp forms | 15648 | 3240 | 12408 |
| Eisenstein series | 384 | 0 | 384 |
Decomposition of \(S_{2}^{\mathrm{new}}(24200, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(24200, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(24200, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(550, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2200, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3025, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(6050, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(12100, [\chi])\)\(^{\oplus 2}\)