# Properties

 Label 2400.2.f.d.1249.2 Level $2400$ Weight $2$ Character 2400.1249 Analytic conductor $19.164$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2400 = 2^{5} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2400.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$19.1640964851$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 480) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 1249.2 Root $$-1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 2400.1249 Dual form 2400.2.f.d.1249.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+1.00000i q^{3} -4.00000i q^{7} -1.00000 q^{9} +O(q^{10})$$ $$q+1.00000i q^{3} -4.00000i q^{7} -1.00000 q^{9} -4.00000 q^{11} +6.00000i q^{13} -2.00000i q^{17} +4.00000 q^{19} +4.00000 q^{21} -1.00000i q^{27} -10.0000 q^{29} +4.00000 q^{31} -4.00000i q^{33} +10.0000i q^{37} -6.00000 q^{39} +2.00000 q^{41} +4.00000i q^{43} +8.00000i q^{47} -9.00000 q^{49} +2.00000 q^{51} +2.00000i q^{53} +4.00000i q^{57} +12.0000 q^{59} -10.0000 q^{61} +4.00000i q^{63} +12.0000i q^{67} +10.0000i q^{73} +16.0000i q^{77} -4.00000 q^{79} +1.00000 q^{81} -4.00000i q^{83} -10.0000i q^{87} +6.00000 q^{89} +24.0000 q^{91} +4.00000i q^{93} +14.0000i q^{97} +4.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{9} + O(q^{10})$$ $$2 q - 2 q^{9} - 8 q^{11} + 8 q^{19} + 8 q^{21} - 20 q^{29} + 8 q^{31} - 12 q^{39} + 4 q^{41} - 18 q^{49} + 4 q^{51} + 24 q^{59} - 20 q^{61} - 8 q^{79} + 2 q^{81} + 12 q^{89} + 48 q^{91} + 8 q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$1601$$ $$1951$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 1.00000i 0.577350i
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ − 4.00000i − 1.51186i −0.654654 0.755929i $$-0.727186\pi$$
0.654654 0.755929i $$-0.272814\pi$$
$$8$$ 0 0
$$9$$ −1.00000 −0.333333
$$10$$ 0 0
$$11$$ −4.00000 −1.20605 −0.603023 0.797724i $$-0.706037\pi$$
−0.603023 + 0.797724i $$0.706037\pi$$
$$12$$ 0 0
$$13$$ 6.00000i 1.66410i 0.554700 + 0.832050i $$0.312833\pi$$
−0.554700 + 0.832050i $$0.687167\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ − 2.00000i − 0.485071i −0.970143 0.242536i $$-0.922021\pi$$
0.970143 0.242536i $$-0.0779791\pi$$
$$18$$ 0 0
$$19$$ 4.00000 0.917663 0.458831 0.888523i $$-0.348268\pi$$
0.458831 + 0.888523i $$0.348268\pi$$
$$20$$ 0 0
$$21$$ 4.00000 0.872872
$$22$$ 0 0
$$23$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ − 1.00000i − 0.192450i
$$28$$ 0 0
$$29$$ −10.0000 −1.85695 −0.928477 0.371391i $$-0.878881\pi$$
−0.928477 + 0.371391i $$0.878881\pi$$
$$30$$ 0 0
$$31$$ 4.00000 0.718421 0.359211 0.933257i $$-0.383046\pi$$
0.359211 + 0.933257i $$0.383046\pi$$
$$32$$ 0 0
$$33$$ − 4.00000i − 0.696311i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 10.0000i 1.64399i 0.569495 + 0.821995i $$0.307139\pi$$
−0.569495 + 0.821995i $$0.692861\pi$$
$$38$$ 0 0
$$39$$ −6.00000 −0.960769
$$40$$ 0 0
$$41$$ 2.00000 0.312348 0.156174 0.987730i $$-0.450084\pi$$
0.156174 + 0.987730i $$0.450084\pi$$
$$42$$ 0 0
$$43$$ 4.00000i 0.609994i 0.952353 + 0.304997i $$0.0986555\pi$$
−0.952353 + 0.304997i $$0.901344\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 8.00000i 1.16692i 0.812142 + 0.583460i $$0.198301\pi$$
−0.812142 + 0.583460i $$0.801699\pi$$
$$48$$ 0 0
$$49$$ −9.00000 −1.28571
$$50$$ 0 0
$$51$$ 2.00000 0.280056
$$52$$ 0 0
$$53$$ 2.00000i 0.274721i 0.990521 + 0.137361i $$0.0438619\pi$$
−0.990521 + 0.137361i $$0.956138\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 4.00000i 0.529813i
$$58$$ 0 0
$$59$$ 12.0000 1.56227 0.781133 0.624364i $$-0.214642\pi$$
0.781133 + 0.624364i $$0.214642\pi$$
$$60$$ 0 0
$$61$$ −10.0000 −1.28037 −0.640184 0.768221i $$-0.721142\pi$$
−0.640184 + 0.768221i $$0.721142\pi$$
$$62$$ 0 0
$$63$$ 4.00000i 0.503953i
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 12.0000i 1.46603i 0.680211 + 0.733017i $$0.261888\pi$$
−0.680211 + 0.733017i $$0.738112\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ 10.0000i 1.17041i 0.810885 + 0.585206i $$0.198986\pi$$
−0.810885 + 0.585206i $$0.801014\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 16.0000i 1.82337i
$$78$$ 0 0
$$79$$ −4.00000 −0.450035 −0.225018 0.974355i $$-0.572244\pi$$
−0.225018 + 0.974355i $$0.572244\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 0 0
$$83$$ − 4.00000i − 0.439057i −0.975606 0.219529i $$-0.929548\pi$$
0.975606 0.219529i $$-0.0704519\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ − 10.0000i − 1.07211i
$$88$$ 0 0
$$89$$ 6.00000 0.635999 0.317999 0.948091i $$-0.396989\pi$$
0.317999 + 0.948091i $$0.396989\pi$$
$$90$$ 0 0
$$91$$ 24.0000 2.51588
$$92$$ 0 0
$$93$$ 4.00000i 0.414781i
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 14.0000i 1.42148i 0.703452 + 0.710742i $$0.251641\pi$$
−0.703452 + 0.710742i $$0.748359\pi$$
$$98$$ 0 0
$$99$$ 4.00000 0.402015
$$100$$ 0 0
$$101$$ 2.00000 0.199007 0.0995037 0.995037i $$-0.468274\pi$$
0.0995037 + 0.995037i $$0.468274\pi$$
$$102$$ 0 0
$$103$$ − 4.00000i − 0.394132i −0.980390 0.197066i $$-0.936859\pi$$
0.980390 0.197066i $$-0.0631413\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ − 12.0000i − 1.16008i −0.814587 0.580042i $$-0.803036\pi$$
0.814587 0.580042i $$-0.196964\pi$$
$$108$$ 0 0
$$109$$ 2.00000 0.191565 0.0957826 0.995402i $$-0.469465\pi$$
0.0957826 + 0.995402i $$0.469465\pi$$
$$110$$ 0 0
$$111$$ −10.0000 −0.949158
$$112$$ 0 0
$$113$$ − 6.00000i − 0.564433i −0.959351 0.282216i $$-0.908930\pi$$
0.959351 0.282216i $$-0.0910696\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ − 6.00000i − 0.554700i
$$118$$ 0 0
$$119$$ −8.00000 −0.733359
$$120$$ 0 0
$$121$$ 5.00000 0.454545
$$122$$ 0 0
$$123$$ 2.00000i 0.180334i
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 12.0000i 1.06483i 0.846484 + 0.532414i $$0.178715\pi$$
−0.846484 + 0.532414i $$0.821285\pi$$
$$128$$ 0 0
$$129$$ −4.00000 −0.352180
$$130$$ 0 0
$$131$$ −20.0000 −1.74741 −0.873704 0.486458i $$-0.838289\pi$$
−0.873704 + 0.486458i $$0.838289\pi$$
$$132$$ 0 0
$$133$$ − 16.0000i − 1.38738i
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 22.0000i 1.87959i 0.341743 + 0.939793i $$0.388983\pi$$
−0.341743 + 0.939793i $$0.611017\pi$$
$$138$$ 0 0
$$139$$ 4.00000 0.339276 0.169638 0.985506i $$-0.445740\pi$$
0.169638 + 0.985506i $$0.445740\pi$$
$$140$$ 0 0
$$141$$ −8.00000 −0.673722
$$142$$ 0 0
$$143$$ − 24.0000i − 2.00698i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ − 9.00000i − 0.742307i
$$148$$ 0 0
$$149$$ −10.0000 −0.819232 −0.409616 0.912258i $$-0.634337\pi$$
−0.409616 + 0.912258i $$0.634337\pi$$
$$150$$ 0 0
$$151$$ −4.00000 −0.325515 −0.162758 0.986666i $$-0.552039\pi$$
−0.162758 + 0.986666i $$0.552039\pi$$
$$152$$ 0 0
$$153$$ 2.00000i 0.161690i
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 2.00000i 0.159617i 0.996810 + 0.0798087i $$0.0254309\pi$$
−0.996810 + 0.0798087i $$0.974569\pi$$
$$158$$ 0 0
$$159$$ −2.00000 −0.158610
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 12.0000i 0.939913i 0.882690 + 0.469956i $$0.155730\pi$$
−0.882690 + 0.469956i $$0.844270\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ − 8.00000i − 0.619059i −0.950890 0.309529i $$-0.899829\pi$$
0.950890 0.309529i $$-0.100171\pi$$
$$168$$ 0 0
$$169$$ −23.0000 −1.76923
$$170$$ 0 0
$$171$$ −4.00000 −0.305888
$$172$$ 0 0
$$173$$ 18.0000i 1.36851i 0.729241 + 0.684257i $$0.239873\pi$$
−0.729241 + 0.684257i $$0.760127\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 12.0000i 0.901975i
$$178$$ 0 0
$$179$$ −12.0000 −0.896922 −0.448461 0.893802i $$-0.648028\pi$$
−0.448461 + 0.893802i $$0.648028\pi$$
$$180$$ 0 0
$$181$$ 6.00000 0.445976 0.222988 0.974821i $$-0.428419\pi$$
0.222988 + 0.974821i $$0.428419\pi$$
$$182$$ 0 0
$$183$$ − 10.0000i − 0.739221i
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 8.00000i 0.585018i
$$188$$ 0 0
$$189$$ −4.00000 −0.290957
$$190$$ 0 0
$$191$$ −16.0000 −1.15772 −0.578860 0.815427i $$-0.696502\pi$$
−0.578860 + 0.815427i $$0.696502\pi$$
$$192$$ 0 0
$$193$$ 2.00000i 0.143963i 0.997406 + 0.0719816i $$0.0229323\pi$$
−0.997406 + 0.0719816i $$0.977068\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ − 2.00000i − 0.142494i −0.997459 0.0712470i $$-0.977302\pi$$
0.997459 0.0712470i $$-0.0226979\pi$$
$$198$$ 0 0
$$199$$ −20.0000 −1.41776 −0.708881 0.705328i $$-0.750800\pi$$
−0.708881 + 0.705328i $$0.750800\pi$$
$$200$$ 0 0
$$201$$ −12.0000 −0.846415
$$202$$ 0 0
$$203$$ 40.0000i 2.80745i
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −16.0000 −1.10674
$$210$$ 0 0
$$211$$ 4.00000 0.275371 0.137686 0.990476i $$-0.456034\pi$$
0.137686 + 0.990476i $$0.456034\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ − 16.0000i − 1.08615i
$$218$$ 0 0
$$219$$ −10.0000 −0.675737
$$220$$ 0 0
$$221$$ 12.0000 0.807207
$$222$$ 0 0
$$223$$ − 28.0000i − 1.87502i −0.347960 0.937509i $$-0.613126\pi$$
0.347960 0.937509i $$-0.386874\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ − 12.0000i − 0.796468i −0.917284 0.398234i $$-0.869623\pi$$
0.917284 0.398234i $$-0.130377\pi$$
$$228$$ 0 0
$$229$$ 10.0000 0.660819 0.330409 0.943838i $$-0.392813\pi$$
0.330409 + 0.943838i $$0.392813\pi$$
$$230$$ 0 0
$$231$$ −16.0000 −1.05272
$$232$$ 0 0
$$233$$ 2.00000i 0.131024i 0.997852 + 0.0655122i $$0.0208681\pi$$
−0.997852 + 0.0655122i $$0.979132\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ − 4.00000i − 0.259828i
$$238$$ 0 0
$$239$$ −16.0000 −1.03495 −0.517477 0.855697i $$-0.673129\pi$$
−0.517477 + 0.855697i $$0.673129\pi$$
$$240$$ 0 0
$$241$$ 18.0000 1.15948 0.579741 0.814801i $$-0.303154\pi$$
0.579741 + 0.814801i $$0.303154\pi$$
$$242$$ 0 0
$$243$$ 1.00000i 0.0641500i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 24.0000i 1.52708i
$$248$$ 0 0
$$249$$ 4.00000 0.253490
$$250$$ 0 0
$$251$$ 28.0000 1.76734 0.883672 0.468106i $$-0.155064\pi$$
0.883672 + 0.468106i $$0.155064\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ − 26.0000i − 1.62184i −0.585160 0.810918i $$-0.698968\pi$$
0.585160 0.810918i $$-0.301032\pi$$
$$258$$ 0 0
$$259$$ 40.0000 2.48548
$$260$$ 0 0
$$261$$ 10.0000 0.618984
$$262$$ 0 0
$$263$$ 8.00000i 0.493301i 0.969104 + 0.246651i $$0.0793300\pi$$
−0.969104 + 0.246651i $$0.920670\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 6.00000i 0.367194i
$$268$$ 0 0
$$269$$ 6.00000 0.365826 0.182913 0.983129i $$-0.441447\pi$$
0.182913 + 0.983129i $$0.441447\pi$$
$$270$$ 0 0
$$271$$ 28.0000 1.70088 0.850439 0.526073i $$-0.176336\pi$$
0.850439 + 0.526073i $$0.176336\pi$$
$$272$$ 0 0
$$273$$ 24.0000i 1.45255i
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ − 14.0000i − 0.841178i −0.907251 0.420589i $$-0.861823\pi$$
0.907251 0.420589i $$-0.138177\pi$$
$$278$$ 0 0
$$279$$ −4.00000 −0.239474
$$280$$ 0 0
$$281$$ −22.0000 −1.31241 −0.656205 0.754583i $$-0.727839\pi$$
−0.656205 + 0.754583i $$0.727839\pi$$
$$282$$ 0 0
$$283$$ − 20.0000i − 1.18888i −0.804141 0.594438i $$-0.797374\pi$$
0.804141 0.594438i $$-0.202626\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ − 8.00000i − 0.472225i
$$288$$ 0 0
$$289$$ 13.0000 0.764706
$$290$$ 0 0
$$291$$ −14.0000 −0.820695
$$292$$ 0 0
$$293$$ 18.0000i 1.05157i 0.850617 + 0.525786i $$0.176229\pi$$
−0.850617 + 0.525786i $$0.823771\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 4.00000i 0.232104i
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 16.0000 0.922225
$$302$$ 0 0
$$303$$ 2.00000i 0.114897i
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ − 20.0000i − 1.14146i −0.821138 0.570730i $$-0.806660\pi$$
0.821138 0.570730i $$-0.193340\pi$$
$$308$$ 0 0
$$309$$ 4.00000 0.227552
$$310$$ 0 0
$$311$$ −8.00000 −0.453638 −0.226819 0.973937i $$-0.572833\pi$$
−0.226819 + 0.973937i $$0.572833\pi$$
$$312$$ 0 0
$$313$$ − 6.00000i − 0.339140i −0.985518 0.169570i $$-0.945762\pi$$
0.985518 0.169570i $$-0.0542379\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 22.0000i 1.23564i 0.786318 + 0.617822i $$0.211985\pi$$
−0.786318 + 0.617822i $$0.788015\pi$$
$$318$$ 0 0
$$319$$ 40.0000 2.23957
$$320$$ 0 0
$$321$$ 12.0000 0.669775
$$322$$ 0 0
$$323$$ − 8.00000i − 0.445132i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 2.00000i 0.110600i
$$328$$ 0 0
$$329$$ 32.0000 1.76422
$$330$$ 0 0
$$331$$ 28.0000 1.53902 0.769510 0.638635i $$-0.220501\pi$$
0.769510 + 0.638635i $$0.220501\pi$$
$$332$$ 0 0
$$333$$ − 10.0000i − 0.547997i
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 14.0000i 0.762629i 0.924445 + 0.381314i $$0.124528\pi$$
−0.924445 + 0.381314i $$0.875472\pi$$
$$338$$ 0 0
$$339$$ 6.00000 0.325875
$$340$$ 0 0
$$341$$ −16.0000 −0.866449
$$342$$ 0 0
$$343$$ 8.00000i 0.431959i
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 12.0000i 0.644194i 0.946707 + 0.322097i $$0.104388\pi$$
−0.946707 + 0.322097i $$0.895612\pi$$
$$348$$ 0 0
$$349$$ −22.0000 −1.17763 −0.588817 0.808267i $$-0.700406\pi$$
−0.588817 + 0.808267i $$0.700406\pi$$
$$350$$ 0 0
$$351$$ 6.00000 0.320256
$$352$$ 0 0
$$353$$ − 6.00000i − 0.319348i −0.987170 0.159674i $$-0.948956\pi$$
0.987170 0.159674i $$-0.0510443\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ − 8.00000i − 0.423405i
$$358$$ 0 0
$$359$$ −16.0000 −0.844448 −0.422224 0.906492i $$-0.638750\pi$$
−0.422224 + 0.906492i $$0.638750\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 0 0
$$363$$ 5.00000i 0.262432i
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 36.0000i 1.87918i 0.342296 + 0.939592i $$0.388796\pi$$
−0.342296 + 0.939592i $$0.611204\pi$$
$$368$$ 0 0
$$369$$ −2.00000 −0.104116
$$370$$ 0 0
$$371$$ 8.00000 0.415339
$$372$$ 0 0
$$373$$ − 26.0000i − 1.34623i −0.739538 0.673114i $$-0.764956\pi$$
0.739538 0.673114i $$-0.235044\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ − 60.0000i − 3.09016i
$$378$$ 0 0
$$379$$ 12.0000 0.616399 0.308199 0.951322i $$-0.400274\pi$$
0.308199 + 0.951322i $$0.400274\pi$$
$$380$$ 0 0
$$381$$ −12.0000 −0.614779
$$382$$ 0 0
$$383$$ 16.0000i 0.817562i 0.912633 + 0.408781i $$0.134046\pi$$
−0.912633 + 0.408781i $$0.865954\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ − 4.00000i − 0.203331i
$$388$$ 0 0
$$389$$ −26.0000 −1.31825 −0.659126 0.752032i $$-0.729074\pi$$
−0.659126 + 0.752032i $$0.729074\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ − 20.0000i − 1.00887i
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ − 14.0000i − 0.702640i −0.936255 0.351320i $$-0.885733\pi$$
0.936255 0.351320i $$-0.114267\pi$$
$$398$$ 0 0
$$399$$ 16.0000 0.801002
$$400$$ 0 0
$$401$$ −6.00000 −0.299626 −0.149813 0.988714i $$-0.547867\pi$$
−0.149813 + 0.988714i $$0.547867\pi$$
$$402$$ 0 0
$$403$$ 24.0000i 1.19553i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ − 40.0000i − 1.98273i
$$408$$ 0 0
$$409$$ 22.0000 1.08783 0.543915 0.839140i $$-0.316941\pi$$
0.543915 + 0.839140i $$0.316941\pi$$
$$410$$ 0 0
$$411$$ −22.0000 −1.08518
$$412$$ 0 0
$$413$$ − 48.0000i − 2.36193i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 4.00000i 0.195881i
$$418$$ 0 0
$$419$$ 12.0000 0.586238 0.293119 0.956076i $$-0.405307\pi$$
0.293119 + 0.956076i $$0.405307\pi$$
$$420$$ 0 0
$$421$$ −26.0000 −1.26716 −0.633581 0.773676i $$-0.718416\pi$$
−0.633581 + 0.773676i $$0.718416\pi$$
$$422$$ 0 0
$$423$$ − 8.00000i − 0.388973i
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 40.0000i 1.93574i
$$428$$ 0 0
$$429$$ 24.0000 1.15873
$$430$$ 0 0
$$431$$ −8.00000 −0.385346 −0.192673 0.981263i $$-0.561716\pi$$
−0.192673 + 0.981263i $$0.561716\pi$$
$$432$$ 0 0
$$433$$ 2.00000i 0.0961139i 0.998845 + 0.0480569i $$0.0153029\pi$$
−0.998845 + 0.0480569i $$0.984697\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ −20.0000 −0.954548 −0.477274 0.878755i $$-0.658375\pi$$
−0.477274 + 0.878755i $$0.658375\pi$$
$$440$$ 0 0
$$441$$ 9.00000 0.428571
$$442$$ 0 0
$$443$$ − 12.0000i − 0.570137i −0.958507 0.285069i $$-0.907984\pi$$
0.958507 0.285069i $$-0.0920164\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ − 10.0000i − 0.472984i
$$448$$ 0 0
$$449$$ 38.0000 1.79333 0.896665 0.442709i $$-0.145982\pi$$
0.896665 + 0.442709i $$0.145982\pi$$
$$450$$ 0 0
$$451$$ −8.00000 −0.376705
$$452$$ 0 0
$$453$$ − 4.00000i − 0.187936i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 6.00000i 0.280668i 0.990104 + 0.140334i $$0.0448177\pi$$
−0.990104 + 0.140334i $$0.955182\pi$$
$$458$$ 0 0
$$459$$ −2.00000 −0.0933520
$$460$$ 0 0
$$461$$ 18.0000 0.838344 0.419172 0.907907i $$-0.362320\pi$$
0.419172 + 0.907907i $$0.362320\pi$$
$$462$$ 0 0
$$463$$ 4.00000i 0.185896i 0.995671 + 0.0929479i $$0.0296290\pi$$
−0.995671 + 0.0929479i $$0.970371\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ − 12.0000i − 0.555294i −0.960683 0.277647i $$-0.910445\pi$$
0.960683 0.277647i $$-0.0895545\pi$$
$$468$$ 0 0
$$469$$ 48.0000 2.21643
$$470$$ 0 0
$$471$$ −2.00000 −0.0921551
$$472$$ 0 0
$$473$$ − 16.0000i − 0.735681i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ − 2.00000i − 0.0915737i
$$478$$ 0 0
$$479$$ −24.0000 −1.09659 −0.548294 0.836286i $$-0.684723\pi$$
−0.548294 + 0.836286i $$0.684723\pi$$
$$480$$ 0 0
$$481$$ −60.0000 −2.73576
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ − 20.0000i − 0.906287i −0.891438 0.453143i $$-0.850303\pi$$
0.891438 0.453143i $$-0.149697\pi$$
$$488$$ 0 0
$$489$$ −12.0000 −0.542659
$$490$$ 0 0
$$491$$ 4.00000 0.180517 0.0902587 0.995918i $$-0.471231\pi$$
0.0902587 + 0.995918i $$0.471231\pi$$
$$492$$ 0 0
$$493$$ 20.0000i 0.900755i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −20.0000 −0.895323 −0.447661 0.894203i $$-0.647743\pi$$
−0.447661 + 0.894203i $$0.647743\pi$$
$$500$$ 0 0
$$501$$ 8.00000 0.357414
$$502$$ 0 0
$$503$$ 16.0000i 0.713405i 0.934218 + 0.356702i $$0.116099\pi$$
−0.934218 + 0.356702i $$0.883901\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ − 23.0000i − 1.02147i
$$508$$ 0 0
$$509$$ 6.00000 0.265945 0.132973 0.991120i $$-0.457548\pi$$
0.132973 + 0.991120i $$0.457548\pi$$
$$510$$ 0 0
$$511$$ 40.0000 1.76950
$$512$$ 0 0
$$513$$ − 4.00000i − 0.176604i
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ − 32.0000i − 1.40736i
$$518$$ 0 0
$$519$$ −18.0000 −0.790112
$$520$$ 0 0
$$521$$ 18.0000 0.788594 0.394297 0.918983i $$-0.370988\pi$$
0.394297 + 0.918983i $$0.370988\pi$$
$$522$$ 0 0
$$523$$ 4.00000i 0.174908i 0.996169 + 0.0874539i $$0.0278730\pi$$
−0.996169 + 0.0874539i $$0.972127\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ − 8.00000i − 0.348485i
$$528$$ 0 0
$$529$$ 23.0000 1.00000
$$530$$ 0 0
$$531$$ −12.0000 −0.520756
$$532$$ 0 0
$$533$$ 12.0000i 0.519778i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ − 12.0000i − 0.517838i
$$538$$ 0 0
$$539$$ 36.0000 1.55063
$$540$$ 0 0
$$541$$ 14.0000 0.601907 0.300954 0.953639i $$-0.402695\pi$$
0.300954 + 0.953639i $$0.402695\pi$$
$$542$$ 0 0
$$543$$ 6.00000i 0.257485i
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 20.0000i 0.855138i 0.903983 + 0.427569i $$0.140630\pi$$
−0.903983 + 0.427569i $$0.859370\pi$$
$$548$$ 0 0
$$549$$ 10.0000 0.426790
$$550$$ 0 0
$$551$$ −40.0000 −1.70406
$$552$$ 0 0
$$553$$ 16.0000i 0.680389i
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ − 2.00000i − 0.0847427i −0.999102 0.0423714i $$-0.986509\pi$$
0.999102 0.0423714i $$-0.0134913\pi$$
$$558$$ 0 0
$$559$$ −24.0000 −1.01509
$$560$$ 0 0
$$561$$ −8.00000 −0.337760
$$562$$ 0 0
$$563$$ 12.0000i 0.505740i 0.967500 + 0.252870i $$0.0813744\pi$$
−0.967500 + 0.252870i $$0.918626\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ − 4.00000i − 0.167984i
$$568$$ 0 0
$$569$$ 30.0000 1.25767 0.628833 0.777541i $$-0.283533\pi$$
0.628833 + 0.777541i $$0.283533\pi$$
$$570$$ 0 0
$$571$$ −20.0000 −0.836974 −0.418487 0.908223i $$-0.637439\pi$$
−0.418487 + 0.908223i $$0.637439\pi$$
$$572$$ 0 0
$$573$$ − 16.0000i − 0.668410i
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 14.0000i 0.582828i 0.956597 + 0.291414i $$0.0941257\pi$$
−0.956597 + 0.291414i $$0.905874\pi$$
$$578$$ 0 0
$$579$$ −2.00000 −0.0831172
$$580$$ 0 0
$$581$$ −16.0000 −0.663792
$$582$$ 0 0
$$583$$ − 8.00000i − 0.331326i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 20.0000i 0.825488i 0.910847 + 0.412744i $$0.135430\pi$$
−0.910847 + 0.412744i $$0.864570\pi$$
$$588$$ 0 0
$$589$$ 16.0000 0.659269
$$590$$ 0 0
$$591$$ 2.00000 0.0822690
$$592$$ 0 0
$$593$$ − 6.00000i − 0.246390i −0.992382 0.123195i $$-0.960686\pi$$
0.992382 0.123195i $$-0.0393141\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ − 20.0000i − 0.818546i
$$598$$ 0 0
$$599$$ 48.0000 1.96123 0.980613 0.195952i $$-0.0627798\pi$$
0.980613 + 0.195952i $$0.0627798\pi$$
$$600$$ 0 0
$$601$$ 10.0000 0.407909 0.203954 0.978980i $$-0.434621\pi$$
0.203954 + 0.978980i $$0.434621\pi$$
$$602$$ 0 0
$$603$$ − 12.0000i − 0.488678i
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ − 4.00000i − 0.162355i −0.996700 0.0811775i $$-0.974132\pi$$
0.996700 0.0811775i $$-0.0258681\pi$$
$$608$$ 0 0
$$609$$ −40.0000 −1.62088
$$610$$ 0 0
$$611$$ −48.0000 −1.94187
$$612$$ 0 0
$$613$$ 38.0000i 1.53481i 0.641165 + 0.767403i $$0.278451\pi$$
−0.641165 + 0.767403i $$0.721549\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ − 18.0000i − 0.724653i −0.932051 0.362326i $$-0.881983\pi$$
0.932051 0.362326i $$-0.118017\pi$$
$$618$$ 0 0
$$619$$ 4.00000 0.160774 0.0803868 0.996764i $$-0.474384\pi$$
0.0803868 + 0.996764i $$0.474384\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ − 24.0000i − 0.961540i
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ − 16.0000i − 0.638978i
$$628$$ 0 0
$$629$$ 20.0000 0.797452
$$630$$ 0 0
$$631$$ 12.0000 0.477712 0.238856 0.971055i $$-0.423228\pi$$
0.238856 + 0.971055i $$0.423228\pi$$
$$632$$ 0 0
$$633$$ 4.00000i 0.158986i
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ − 54.0000i − 2.13956i
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 42.0000 1.65890 0.829450 0.558581i $$-0.188654\pi$$
0.829450 + 0.558581i $$0.188654\pi$$
$$642$$ 0 0
$$643$$ − 36.0000i − 1.41970i −0.704352 0.709851i $$-0.748762\pi$$
0.704352 0.709851i $$-0.251238\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$648$$ 0 0
$$649$$ −48.0000 −1.88416
$$650$$ 0 0
$$651$$ 16.0000 0.627089
$$652$$ 0 0
$$653$$ − 30.0000i − 1.17399i −0.809590 0.586995i $$-0.800311\pi$$
0.809590 0.586995i $$-0.199689\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ − 10.0000i − 0.390137i
$$658$$ 0 0
$$659$$ −44.0000 −1.71400 −0.856998 0.515319i $$-0.827673\pi$$
−0.856998 + 0.515319i $$0.827673\pi$$
$$660$$ 0 0
$$661$$ −2.00000 −0.0777910 −0.0388955 0.999243i $$-0.512384\pi$$
−0.0388955 + 0.999243i $$0.512384\pi$$
$$662$$ 0 0
$$663$$ 12.0000i 0.466041i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 28.0000 1.08254
$$670$$ 0 0
$$671$$ 40.0000 1.54418
$$672$$ 0 0
$$673$$ − 14.0000i − 0.539660i −0.962908 0.269830i $$-0.913032\pi$$
0.962908 0.269830i $$-0.0869676\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 22.0000i 0.845529i 0.906240 + 0.422764i $$0.138940\pi$$
−0.906240 + 0.422764i $$0.861060\pi$$
$$678$$ 0 0
$$679$$ 56.0000 2.14908
$$680$$ 0 0
$$681$$ 12.0000 0.459841
$$682$$ 0 0
$$683$$ − 28.0000i − 1.07139i −0.844411 0.535695i $$-0.820050\pi$$
0.844411 0.535695i $$-0.179950\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 10.0000i 0.381524i
$$688$$ 0 0
$$689$$ −12.0000 −0.457164
$$690$$ 0 0
$$691$$ 12.0000 0.456502 0.228251 0.973602i $$-0.426699\pi$$
0.228251 + 0.973602i $$0.426699\pi$$
$$692$$ 0 0
$$693$$ − 16.0000i − 0.607790i
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ − 4.00000i − 0.151511i
$$698$$ 0 0
$$699$$ −2.00000 −0.0756469
$$700$$ 0 0
$$701$$ −6.00000 −0.226617 −0.113308 0.993560i $$-0.536145\pi$$
−0.113308 + 0.993560i $$0.536145\pi$$
$$702$$ 0 0
$$703$$ 40.0000i 1.50863i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ − 8.00000i − 0.300871i
$$708$$ 0 0
$$709$$ 10.0000 0.375558 0.187779 0.982211i $$-0.439871\pi$$
0.187779 + 0.982211i $$0.439871\pi$$
$$710$$ 0 0
$$711$$ 4.00000 0.150012
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ − 16.0000i − 0.597531i
$$718$$ 0 0
$$719$$ −8.00000 −0.298350 −0.149175 0.988811i $$-0.547662\pi$$
−0.149175 + 0.988811i $$0.547662\pi$$
$$720$$ 0 0
$$721$$ −16.0000 −0.595871
$$722$$ 0 0
$$723$$ 18.0000i 0.669427i
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ − 4.00000i − 0.148352i −0.997245 0.0741759i $$-0.976367\pi$$
0.997245 0.0741759i $$-0.0236326\pi$$
$$728$$ 0 0
$$729$$ −1.00000 −0.0370370
$$730$$ 0 0
$$731$$ 8.00000 0.295891
$$732$$ 0 0
$$733$$ 6.00000i 0.221615i 0.993842 + 0.110808i $$0.0353437\pi$$
−0.993842 + 0.110808i $$0.964656\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ − 48.0000i − 1.76810i
$$738$$ 0 0
$$739$$ −52.0000 −1.91285 −0.956425 0.291977i $$-0.905687\pi$$
−0.956425 + 0.291977i $$0.905687\pi$$
$$740$$ 0 0
$$741$$ −24.0000 −0.881662
$$742$$ 0 0
$$743$$ − 24.0000i − 0.880475i −0.897881 0.440237i $$-0.854894\pi$$
0.897881 0.440237i $$-0.145106\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 4.00000i 0.146352i
$$748$$ 0 0
$$749$$ −48.0000 −1.75388
$$750$$ 0 0
$$751$$ 4.00000 0.145962 0.0729810 0.997333i $$-0.476749\pi$$
0.0729810 + 0.997333i $$0.476749\pi$$
$$752$$ 0 0
$$753$$ 28.0000i 1.02038i
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 2.00000i 0.0726912i 0.999339 + 0.0363456i $$0.0115717\pi$$
−0.999339 + 0.0363456i $$0.988428\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −14.0000 −0.507500 −0.253750 0.967270i $$-0.581664\pi$$
−0.253750 + 0.967270i $$0.581664\pi$$
$$762$$ 0 0
$$763$$ − 8.00000i − 0.289619i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 72.0000i 2.59977i
$$768$$ 0 0
$$769$$ −18.0000 −0.649097 −0.324548 0.945869i $$-0.605212\pi$$
−0.324548 + 0.945869i $$0.605212\pi$$
$$770$$ 0 0
$$771$$ 26.0000 0.936367
$$772$$ 0 0
$$773$$ 34.0000i 1.22290i 0.791285 + 0.611448i $$0.209412\pi$$
−0.791285 + 0.611448i $$0.790588\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 40.0000i 1.43499i
$$778$$ 0 0
$$779$$ 8.00000 0.286630
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 10.0000i 0.357371i
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ − 28.0000i − 0.998092i −0.866575 0.499046i $$-0.833684\pi$$
0.866575 0.499046i $$-0.166316\pi$$
$$788$$ 0 0
$$789$$ −8.00000 −0.284808
$$790$$ 0 0
$$791$$ −24.0000 −0.853342
$$792$$ 0 0
$$793$$ − 60.0000i − 2.13066i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ − 18.0000i − 0.637593i −0.947823 0.318796i $$-0.896721\pi$$
0.947823 0.318796i $$-0.103279\pi$$
$$798$$ 0 0
$$799$$ 16.0000 0.566039
$$800$$ 0 0
$$801$$ −6.00000 −0.212000
$$802$$ 0 0
$$803$$ − 40.0000i − 1.41157i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 6.00000i 0.211210i
$$808$$ 0 0
$$809$$ −18.0000 −0.632846 −0.316423 0.948618i $$-0.602482\pi$$
−0.316423 + 0.948618i $$0.602482\pi$$
$$810$$ 0 0
$$811$$ 52.0000 1.82597 0.912983 0.407997i $$-0.133772\pi$$
0.912983 + 0.407997i $$0.133772\pi$$
$$812$$ 0 0
$$813$$ 28.0000i 0.982003i
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 16.0000i 0.559769i
$$818$$ 0 0
$$819$$ −24.0000 −0.838628
$$820$$ 0 0
$$821$$ 34.0000 1.18661 0.593304 0.804978i $$-0.297823\pi$$
0.593304 + 0.804978i $$0.297823\pi$$
$$822$$ 0 0
$$823$$ − 12.0000i − 0.418294i −0.977884 0.209147i $$-0.932931\pi$$
0.977884 0.209147i $$-0.0670687\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 52.0000i 1.80822i 0.427303 + 0.904109i $$0.359464\pi$$
−0.427303 + 0.904109i $$0.640536\pi$$
$$828$$ 0 0
$$829$$ −14.0000 −0.486240 −0.243120 0.969996i $$-0.578171\pi$$
−0.243120 + 0.969996i $$0.578171\pi$$
$$830$$ 0 0
$$831$$ 14.0000 0.485655
$$832$$ 0 0
$$833$$ 18.0000i 0.623663i
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ − 4.00000i − 0.138260i
$$838$$ 0 0
$$839$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$840$$ 0 0
$$841$$ 71.0000 2.44828
$$842$$ 0 0
$$843$$ − 22.0000i − 0.757720i
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ − 20.0000i − 0.687208i
$$848$$ 0 0
$$849$$ 20.0000 0.686398
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ − 26.0000i − 0.890223i −0.895475 0.445112i $$-0.853164\pi$$
0.895475 0.445112i $$-0.146836\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 6.00000i 0.204956i 0.994735 + 0.102478i $$0.0326771\pi$$
−0.994735 + 0.102478i $$0.967323\pi$$
$$858$$ 0 0
$$859$$ −20.0000 −0.682391 −0.341196 0.939992i $$-0.610832\pi$$
−0.341196 + 0.939992i $$0.610832\pi$$
$$860$$ 0 0
$$861$$ 8.00000 0.272639
$$862$$ 0 0
$$863$$ 32.0000i 1.08929i 0.838666 + 0.544646i $$0.183336\pi$$
−0.838666 + 0.544646i $$0.816664\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 13.0000i 0.441503i
$$868$$ 0 0
$$869$$ 16.0000 0.542763
$$870$$ 0 0
$$871$$ −72.0000 −2.43963
$$872$$ 0 0
$$873$$ − 14.0000i − 0.473828i
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 2.00000i 0.0675352i 0.999430 + 0.0337676i $$0.0107506\pi$$
−0.999430 + 0.0337676i $$0.989249\pi$$
$$878$$ 0 0
$$879$$ −18.0000 −0.607125
$$880$$ 0 0
$$881$$ 2.00000 0.0673817 0.0336909 0.999432i $$-0.489274\pi$$
0.0336909 + 0.999432i $$0.489274\pi$$
$$882$$ 0 0
$$883$$ 28.0000i 0.942275i 0.882060 + 0.471138i $$0.156156\pi$$
−0.882060 + 0.471138i $$0.843844\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 8.00000i 0.268614i 0.990940 + 0.134307i $$0.0428808\pi$$
−0.990940 + 0.134307i $$0.957119\pi$$
$$888$$ 0 0
$$889$$ 48.0000 1.60987
$$890$$ 0 0
$$891$$ −4.00000 −0.134005
$$892$$ 0 0
$$893$$ 32.0000i 1.07084i
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ −40.0000 −1.33407
$$900$$ 0 0
$$901$$ 4.00000 0.133259
$$902$$ 0 0
$$903$$ 16.0000i 0.532447i
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ − 20.0000i − 0.664089i −0.943264 0.332045i $$-0.892262\pi$$
0.943264 0.332045i $$-0.107738\pi$$
$$908$$ 0 0
$$909$$ −2.00000 −0.0663358
$$910$$ 0 0
$$911$$ 32.0000 1.06021 0.530104 0.847933i $$-0.322153\pi$$
0.530104 + 0.847933i $$0.322153\pi$$
$$912$$ 0 0
$$913$$ 16.0000i 0.529523i
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 80.0000i 2.64183i
$$918$$ 0 0
$$919$$ 4.00000 0.131948 0.0659739 0.997821i $$-0.478985\pi$$
0.0659739 + 0.997821i $$0.478985\pi$$
$$920$$ 0 0
$$921$$ 20.0000 0.659022
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 4.00000i 0.131377i
$$928$$ 0 0
$$929$$ 54.0000 1.77168 0.885841 0.463988i $$-0.153582\pi$$
0.885841 + 0.463988i $$0.153582\pi$$
$$930$$ 0 0
$$931$$ −36.0000 −1.17985
$$932$$ 0 0
$$933$$ − 8.00000i − 0.261908i
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ − 10.0000i − 0.326686i −0.986569 0.163343i $$-0.947772\pi$$
0.986569 0.163343i $$-0.0522277\pi$$
$$938$$ 0 0
$$939$$ 6.00000 0.195803
$$940$$ 0 0
$$941$$ −46.0000 −1.49956 −0.749779 0.661689i $$-0.769840\pi$$
−0.749779 + 0.661689i $$0.769840\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ − 52.0000i − 1.68977i −0.534946 0.844886i $$-0.679668\pi$$
0.534946 0.844886i $$-0.320332\pi$$
$$948$$ 0 0
$$949$$ −60.0000 −1.94768
$$950$$ 0 0
$$951$$ −22.0000 −0.713399
$$952$$ 0 0
$$953$$ 10.0000i 0.323932i 0.986796 + 0.161966i $$0.0517835\pi$$
−0.986796 + 0.161966i $$0.948217\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 40.0000i 1.29302i
$$958$$ 0 0
$$959$$ 88.0000 2.84167
$$960$$ 0 0
$$961$$ −15.0000 −0.483871
$$962$$ 0 0
$$963$$ 12.0000i 0.386695i
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ − 28.0000i − 0.900419i −0.892923 0.450210i $$-0.851349\pi$$
0.892923 0.450210i $$-0.148651\pi$$
$$968$$ 0 0
$$969$$ 8.00000 0.256997
$$970$$ 0 0
$$971$$ −36.0000 −1.15529 −0.577647 0.816286i $$-0.696029\pi$$
−0.577647 + 0.816286i $$0.696029\pi$$
$$972$$ 0 0
$$973$$ − 16.0000i − 0.512936i
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ − 18.0000i − 0.575871i −0.957650 0.287936i $$-0.907031\pi$$
0.957650 0.287936i $$-0.0929689\pi$$
$$978$$ 0 0
$$979$$ −24.0000 −0.767043
$$980$$ 0 0
$$981$$ −2.00000 −0.0638551
$$982$$ 0 0
$$983$$ 8.00000i 0.255160i 0.991828 + 0.127580i $$0.0407210\pi$$
−0.991828 + 0.127580i $$0.959279\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 32.0000i 1.01857i
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ 4.00000 0.127064 0.0635321 0.997980i $$-0.479763\pi$$
0.0635321 + 0.997980i $$0.479763\pi$$
$$992$$ 0 0
$$993$$ 28.0000i 0.888553i
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 42.0000i 1.33015i 0.746775 + 0.665077i $$0.231601\pi$$
−0.746775 + 0.665077i $$0.768399\pi$$
$$998$$ 0 0
$$999$$ 10.0000 0.316386
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.2.f.d.1249.2 2
3.2 odd 2 7200.2.f.ba.6049.1 2
4.3 odd 2 2400.2.f.o.1249.1 2
5.2 odd 4 480.2.a.f.1.1 yes 1
5.3 odd 4 2400.2.a.a.1.1 1
5.4 even 2 inner 2400.2.f.d.1249.1 2
8.3 odd 2 4800.2.f.h.3649.2 2
8.5 even 2 4800.2.f.bb.3649.1 2
12.11 even 2 7200.2.f.c.6049.2 2
15.2 even 4 1440.2.a.n.1.1 1
15.8 even 4 7200.2.a.d.1.1 1
15.14 odd 2 7200.2.f.ba.6049.2 2
20.3 even 4 2400.2.a.bh.1.1 1
20.7 even 4 480.2.a.a.1.1 1
20.19 odd 2 2400.2.f.o.1249.2 2
40.3 even 4 4800.2.a.bg.1.1 1
40.13 odd 4 4800.2.a.bo.1.1 1
40.19 odd 2 4800.2.f.h.3649.1 2
40.27 even 4 960.2.a.m.1.1 1
40.29 even 2 4800.2.f.bb.3649.2 2
40.37 odd 4 960.2.a.h.1.1 1
60.23 odd 4 7200.2.a.bw.1.1 1
60.47 odd 4 1440.2.a.g.1.1 1
60.59 even 2 7200.2.f.c.6049.1 2
80.27 even 4 3840.2.k.bb.1921.2 2
80.37 odd 4 3840.2.k.c.1921.1 2
80.67 even 4 3840.2.k.bb.1921.1 2
80.77 odd 4 3840.2.k.c.1921.2 2
120.77 even 4 2880.2.a.p.1.1 1
120.107 odd 4 2880.2.a.c.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
480.2.a.a.1.1 1 20.7 even 4
480.2.a.f.1.1 yes 1 5.2 odd 4
960.2.a.h.1.1 1 40.37 odd 4
960.2.a.m.1.1 1 40.27 even 4
1440.2.a.g.1.1 1 60.47 odd 4
1440.2.a.n.1.1 1 15.2 even 4
2400.2.a.a.1.1 1 5.3 odd 4
2400.2.a.bh.1.1 1 20.3 even 4
2400.2.f.d.1249.1 2 5.4 even 2 inner
2400.2.f.d.1249.2 2 1.1 even 1 trivial
2400.2.f.o.1249.1 2 4.3 odd 2
2400.2.f.o.1249.2 2 20.19 odd 2
2880.2.a.c.1.1 1 120.107 odd 4
2880.2.a.p.1.1 1 120.77 even 4
3840.2.k.c.1921.1 2 80.37 odd 4
3840.2.k.c.1921.2 2 80.77 odd 4
3840.2.k.bb.1921.1 2 80.67 even 4
3840.2.k.bb.1921.2 2 80.27 even 4
4800.2.a.bg.1.1 1 40.3 even 4
4800.2.a.bo.1.1 1 40.13 odd 4
4800.2.f.h.3649.1 2 40.19 odd 2
4800.2.f.h.3649.2 2 8.3 odd 2
4800.2.f.bb.3649.1 2 8.5 even 2
4800.2.f.bb.3649.2 2 40.29 even 2
7200.2.a.d.1.1 1 15.8 even 4
7200.2.a.bw.1.1 1 60.23 odd 4
7200.2.f.c.6049.1 2 60.59 even 2
7200.2.f.c.6049.2 2 12.11 even 2
7200.2.f.ba.6049.1 2 3.2 odd 2
7200.2.f.ba.6049.2 2 15.14 odd 2