Properties

Label 2385.2.g
Level $2385$
Weight $2$
Character orbit 2385.g
Rep. character $\chi_{2385}(1324,\cdot)$
Character field $\Q$
Dimension $132$
Sturm bound $648$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2385 = 3^{2} \cdot 5 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2385.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 265 \)
Character field: \(\Q\)
Sturm bound: \(648\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2385, [\chi])\).

Total New Old
Modular forms 332 136 196
Cusp forms 316 132 184
Eisenstein series 16 4 12

Trace form

\( 132 q + 128 q^{4} - 8 q^{10} + 120 q^{16} + 36 q^{29} - 40 q^{40} + 12 q^{44} - 16 q^{46} - 116 q^{49} + 44 q^{59} + 92 q^{64} - 8 q^{70} + 4 q^{89} + 88 q^{91} - 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2385, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2385, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2385, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(265, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(795, [\chi])\)\(^{\oplus 2}\)