Defining parameters
| Level: | \( N \) | = | \( 238 = 2 \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | = | \( 1 \) |
| Nonzero newspaces: | \( 0 \) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(3456\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(238))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 200 | 0 | 200 |
| Cusp forms | 8 | 0 | 8 |
| Eisenstein series | 192 | 0 | 192 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 0 | 0 | 0 | 0 |
Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(238))\) into lower level spaces
\( S_{1}^{\mathrm{old}}(\Gamma_1(238)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(119))\)\(^{\oplus 2}\)