Properties

Label 2366.2.cb
Level $2366$
Weight $2$
Character orbit 2366.cb
Rep. character $\chi_{2366}(45,\cdot)$
Character field $\Q(\zeta_{156})$
Dimension $5856$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.cb (of order \(156\) and degree \(48\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1183 \)
Character field: \(\Q(\zeta_{156})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2366, [\chi])\).

Total New Old
Modular forms 17664 5856 11808
Cusp forms 17280 5856 11424
Eisenstein series 384 0 384

Trace form

\( 5856 q + 4 q^{7} - 248 q^{9} - 4 q^{12} + 16 q^{15} + 488 q^{16} + 8 q^{18} + 16 q^{19} + 4 q^{21} + 8 q^{28} + 8 q^{29} + 184 q^{30} + 4 q^{31} - 36 q^{33} - 16 q^{35} + 24 q^{36} + 8 q^{37} + 232 q^{39}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2366, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2366, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2366, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1183, [\chi])\)\(^{\oplus 2}\)