Properties

Label 2366.2.bi
Level $2366$
Weight $2$
Character orbit 2366.bi
Rep. character $\chi_{2366}(9,\cdot)$
Character field $\Q(\zeta_{39})$
Dimension $2928$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.bi (of order \(39\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1183 \)
Character field: \(\Q(\zeta_{39})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2366, [\chi])\).

Total New Old
Modular forms 8832 2928 5904
Cusp forms 8640 2928 5712
Eisenstein series 192 0 192

Trace form

\( 2928 q - 4 q^{3} + 122 q^{4} + 6 q^{7} - 240 q^{9} - 8 q^{10} - 20 q^{11} + 2 q^{12} - 72 q^{13} - 2 q^{14} - 48 q^{15} + 122 q^{16} + 8 q^{17} + 6 q^{21} - 4 q^{23} + 126 q^{25} - 6 q^{26} - 16 q^{27}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2366, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2366, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2366, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1183, [\chi])\)\(^{\oplus 2}\)