Properties

Label 234.8.t
Level $234$
Weight $8$
Character orbit 234.t
Rep. character $\chi_{234}(25,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $196$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 234.t (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(234, [\chi])\).

Total New Old
Modular forms 596 196 400
Cusp forms 580 196 384
Eisenstein series 16 0 16

Trace form

\( 196 q + 6272 q^{4} + 4592 q^{9} - 3694 q^{13} - 21952 q^{14} - 401408 q^{16} - 78608 q^{17} + 2296 q^{23} + 1531250 q^{25} + 52928 q^{26} - 344934 q^{27} + 156296 q^{29} - 124736 q^{30} - 206132 q^{35}+ \cdots + 38104128 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(234, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{8}^{\mathrm{old}}(234, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)