Properties

Label 22898.2.a.k
Level $22898$
Weight $2$
Character orbit 22898.a
Self dual yes
Analytic conductor $182.841$
Dimension $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [22898,2,Mod(1,22898)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(22898, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("22898.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 22898 = 2 \cdot 107^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 22898.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,-2,2,-4,-2,2,2,2,-4,2,-2,2,2,-2,2,-10,2,4,-4,-8,2,0,-2,4, 2,-8,2,10,-2,4,2,-8,-10,2,2,-8,4,-8,-4,6,-8,18,2,8,0,0,-2,-6,4,16,2,8, -8,2,2,-4,10,-10,-2,2,4,14,2,2,-8,-10,-10,-6,2,-6,2,10,-8,20,4,8,-8,-4, -4,2,6,-18,-8,14,18,-16,2,6,8,8,0,20,0,-8,-2,-6,-6,14,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(182.841450548\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 4 q^{5} - 2 q^{6} + 2 q^{7} + 2 q^{8} + 2 q^{9} - 4 q^{10} + 2 q^{11} - 2 q^{12} + 2 q^{13} + 2 q^{14} - 2 q^{15} + 2 q^{16} - 10 q^{17} + 2 q^{18} + 4 q^{19} - 4 q^{20}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(107\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.