Properties

Label 2268.2.o
Level $2268$
Weight $2$
Character orbit 2268.o
Rep. character $\chi_{2268}(107,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $376$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.o (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 252 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2268, [\chi])\).

Total New Old
Modular forms 912 392 520
Cusp forms 816 376 440
Eisenstein series 96 16 80

Trace form

\( 376 q - 2 q^{4} - 10 q^{10} + 8 q^{13} - 2 q^{16} - 336 q^{25} - 12 q^{28} + 8 q^{34} - 4 q^{37} - 16 q^{40} + 6 q^{46} + 4 q^{49} + 20 q^{52} - 4 q^{58} - 4 q^{61} - 8 q^{64} - 4 q^{73} + 12 q^{76} + 2 q^{82}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2268, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2268, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2268, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 2}\)