Properties

Label 2268.2.cd
Level $2268$
Weight $2$
Character orbit 2268.cd
Rep. character $\chi_{2268}(19,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $840$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.cd (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 756 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2268, [\chi])\).

Total New Old
Modular forms 2664 888 1776
Cusp forms 2520 840 1680
Eisenstein series 144 48 96

Trace form

\( 840 q + 3 q^{2} - 3 q^{4} + 18 q^{5} + 6 q^{8} - 9 q^{10} - 24 q^{14} - 3 q^{16} + 18 q^{17} - 12 q^{22} - 6 q^{25} + 18 q^{26} - 12 q^{28} + 36 q^{29} + 63 q^{32} - 18 q^{34} - 12 q^{37} + 9 q^{38} - 9 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2268, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2268, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2268, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 2}\)