Properties

Label 2268.2.bx
Level $2268$
Weight $2$
Character orbit 2268.bx
Rep. character $\chi_{2268}(125,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $144$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.bx (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 189 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2268, [\chi])\).

Total New Old
Modular forms 2700 144 2556
Cusp forms 2484 144 2340
Eisenstein series 216 0 216

Trace form

\( 144 q + 6 q^{11} - 48 q^{23} - 12 q^{29} + 27 q^{35} + 18 q^{49} - 42 q^{65} - 36 q^{71} + 51 q^{77} + 36 q^{79} + 36 q^{85} + 9 q^{91} + 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2268, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2268, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2268, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(567, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1134, [\chi])\)\(^{\oplus 2}\)