Properties

Label 2268.2.bo
Level $2268$
Weight $2$
Character orbit 2268.bo
Rep. character $\chi_{2268}(253,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $108$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.bo (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{9})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2268, [\chi])\).

Total New Old
Modular forms 2700 108 2592
Cusp forms 2484 108 2376
Eisenstein series 216 0 216

Trace form

\( 108 q + 6 q^{5} - 12 q^{23} - 18 q^{25} - 36 q^{29} - 18 q^{31} - 12 q^{35} + 18 q^{41} + 18 q^{43} + 18 q^{47} + 72 q^{53} + 90 q^{59} + 48 q^{65} + 54 q^{67} - 12 q^{71} + 36 q^{79} - 90 q^{83} + 36 q^{85}+ \cdots + 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2268, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2268, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2268, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(324, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(567, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1134, [\chi])\)\(^{\oplus 2}\)