Properties

Label 2252.3.d.b.1125.19
Level $2252$
Weight $3$
Character 2252.1125
Analytic conductor $61.363$
Analytic rank $0$
Dimension $76$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2252,3,Mod(1125,2252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2252.1125"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2252, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2252 = 2^{2} \cdot 563 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2252.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [76] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.3625555339\)
Analytic rank: \(0\)
Dimension: \(76\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1125.19
Character \(\chi\) \(=\) 2252.1125
Dual form 2252.3.d.b.1125.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.46129 q^{3} -6.41237i q^{5} -2.35196 q^{7} -2.94204 q^{9} +18.8286 q^{11} -13.2836 q^{13} +15.7827i q^{15} -1.57683 q^{17} +22.8108 q^{19} +5.78886 q^{21} -29.0053 q^{23} -16.1185 q^{25} +29.3929 q^{27} +3.79120i q^{29} +36.5354i q^{31} -46.3427 q^{33} +15.0816i q^{35} +65.6876i q^{37} +32.6949 q^{39} -4.45877i q^{41} -56.6162i q^{43} +18.8655i q^{45} -45.8070 q^{47} -43.4683 q^{49} +3.88105 q^{51} +36.2087i q^{53} -120.736i q^{55} -56.1441 q^{57} +61.7401 q^{59} +47.6548 q^{61} +6.91956 q^{63} +85.1795i q^{65} -52.2962 q^{67} +71.3904 q^{69} -23.2796 q^{71} +117.011i q^{73} +39.6724 q^{75} -44.2841 q^{77} +92.8192i q^{79} -45.8660 q^{81} +42.4434i q^{83} +10.1113i q^{85} -9.33126i q^{87} +71.4541i q^{89} +31.2425 q^{91} -89.9244i q^{93} -146.272i q^{95} -186.081i q^{97} -55.3946 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q + 4 q^{3} - 8 q^{7} + 128 q^{9} + 2 q^{11} - 6 q^{13} + 22 q^{17} + 12 q^{19} - 6 q^{21} + 24 q^{23} - 912 q^{25} + 22 q^{27} - 52 q^{33} - 70 q^{39} - 28 q^{47} - 340 q^{49} + 314 q^{51} - 98 q^{57}+ \cdots + 348 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2252\mathbb{Z}\right)^\times\).

\(n\) \(565\) \(1127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.46129 −0.820431 −0.410215 0.911989i \(-0.634546\pi\)
−0.410215 + 0.911989i \(0.634546\pi\)
\(4\) 0 0
\(5\) 6.41237i 1.28247i −0.767343 0.641237i \(-0.778421\pi\)
0.767343 0.641237i \(-0.221579\pi\)
\(6\) 0 0
\(7\) −2.35196 −0.335994 −0.167997 0.985788i \(-0.553730\pi\)
−0.167997 + 0.985788i \(0.553730\pi\)
\(8\) 0 0
\(9\) −2.94204 −0.326893
\(10\) 0 0
\(11\) 18.8286 1.71169 0.855846 0.517230i \(-0.173037\pi\)
0.855846 + 0.517230i \(0.173037\pi\)
\(12\) 0 0
\(13\) −13.2836 −1.02182 −0.510908 0.859635i \(-0.670691\pi\)
−0.510908 + 0.859635i \(0.670691\pi\)
\(14\) 0 0
\(15\) 15.7827i 1.05218i
\(16\) 0 0
\(17\) −1.57683 −0.0927550 −0.0463775 0.998924i \(-0.514768\pi\)
−0.0463775 + 0.998924i \(0.514768\pi\)
\(18\) 0 0
\(19\) 22.8108 1.20057 0.600285 0.799786i \(-0.295054\pi\)
0.600285 + 0.799786i \(0.295054\pi\)
\(20\) 0 0
\(21\) 5.78886 0.275660
\(22\) 0 0
\(23\) −29.0053 −1.26110 −0.630549 0.776149i \(-0.717170\pi\)
−0.630549 + 0.776149i \(0.717170\pi\)
\(24\) 0 0
\(25\) −16.1185 −0.644741
\(26\) 0 0
\(27\) 29.3929 1.08862
\(28\) 0 0
\(29\) 3.79120i 0.130731i 0.997861 + 0.0653656i \(0.0208214\pi\)
−0.997861 + 0.0653656i \(0.979179\pi\)
\(30\) 0 0
\(31\) 36.5354i 1.17856i 0.807928 + 0.589281i \(0.200589\pi\)
−0.807928 + 0.589281i \(0.799411\pi\)
\(32\) 0 0
\(33\) −46.3427 −1.40433
\(34\) 0 0
\(35\) 15.0816i 0.430904i
\(36\) 0 0
\(37\) 65.6876i 1.77534i 0.460479 + 0.887671i \(0.347678\pi\)
−0.460479 + 0.887671i \(0.652322\pi\)
\(38\) 0 0
\(39\) 32.6949 0.838330
\(40\) 0 0
\(41\) 4.45877i 0.108751i −0.998521 0.0543753i \(-0.982683\pi\)
0.998521 0.0543753i \(-0.0173167\pi\)
\(42\) 0 0
\(43\) 56.6162i 1.31665i −0.752732 0.658327i \(-0.771264\pi\)
0.752732 0.658327i \(-0.228736\pi\)
\(44\) 0 0
\(45\) 18.8655i 0.419233i
\(46\) 0 0
\(47\) −45.8070 −0.974616 −0.487308 0.873230i \(-0.662021\pi\)
−0.487308 + 0.873230i \(0.662021\pi\)
\(48\) 0 0
\(49\) −43.4683 −0.887108
\(50\) 0 0
\(51\) 3.88105 0.0760990
\(52\) 0 0
\(53\) 36.2087i 0.683184i 0.939848 + 0.341592i \(0.110966\pi\)
−0.939848 + 0.341592i \(0.889034\pi\)
\(54\) 0 0
\(55\) 120.736i 2.19520i
\(56\) 0 0
\(57\) −56.1441 −0.984984
\(58\) 0 0
\(59\) 61.7401 1.04644 0.523221 0.852197i \(-0.324730\pi\)
0.523221 + 0.852197i \(0.324730\pi\)
\(60\) 0 0
\(61\) 47.6548 0.781227 0.390613 0.920555i \(-0.372263\pi\)
0.390613 + 0.920555i \(0.372263\pi\)
\(62\) 0 0
\(63\) 6.91956 0.109834
\(64\) 0 0
\(65\) 85.1795i 1.31045i
\(66\) 0 0
\(67\) −52.2962 −0.780540 −0.390270 0.920701i \(-0.627618\pi\)
−0.390270 + 0.920701i \(0.627618\pi\)
\(68\) 0 0
\(69\) 71.3904 1.03464
\(70\) 0 0
\(71\) −23.2796 −0.327881 −0.163941 0.986470i \(-0.552421\pi\)
−0.163941 + 0.986470i \(0.552421\pi\)
\(72\) 0 0
\(73\) 117.011i 1.60289i 0.598069 + 0.801444i \(0.295935\pi\)
−0.598069 + 0.801444i \(0.704065\pi\)
\(74\) 0 0
\(75\) 39.6724 0.528966
\(76\) 0 0
\(77\) −44.2841 −0.575118
\(78\) 0 0
\(79\) 92.8192i 1.17493i 0.809251 + 0.587463i \(0.199873\pi\)
−0.809251 + 0.587463i \(0.800127\pi\)
\(80\) 0 0
\(81\) −45.8660 −0.566247
\(82\) 0 0
\(83\) 42.4434i 0.511366i 0.966761 + 0.255683i \(0.0823004\pi\)
−0.966761 + 0.255683i \(0.917700\pi\)
\(84\) 0 0
\(85\) 10.1113i 0.118956i
\(86\) 0 0
\(87\) 9.33126i 0.107256i
\(88\) 0 0
\(89\) 71.4541i 0.802855i 0.915891 + 0.401427i \(0.131486\pi\)
−0.915891 + 0.401427i \(0.868514\pi\)
\(90\) 0 0
\(91\) 31.2425 0.343324
\(92\) 0 0
\(93\) 89.9244i 0.966929i
\(94\) 0 0
\(95\) 146.272i 1.53970i
\(96\) 0 0
\(97\) 186.081i 1.91836i −0.282798 0.959179i \(-0.591263\pi\)
0.282798 0.959179i \(-0.408737\pi\)
\(98\) 0 0
\(99\) −55.3946 −0.559541
\(100\) 0 0
\(101\) 98.5186 0.975431 0.487716 0.873003i \(-0.337830\pi\)
0.487716 + 0.873003i \(0.337830\pi\)
\(102\) 0 0
\(103\) −16.0891 −0.156205 −0.0781024 0.996945i \(-0.524886\pi\)
−0.0781024 + 0.996945i \(0.524886\pi\)
\(104\) 0 0
\(105\) 37.1203i 0.353527i
\(106\) 0 0
\(107\) 192.218 1.79643 0.898214 0.439559i \(-0.144865\pi\)
0.898214 + 0.439559i \(0.144865\pi\)
\(108\) 0 0
\(109\) 183.480i 1.68330i −0.540024 0.841649i \(-0.681585\pi\)
0.540024 0.841649i \(-0.318415\pi\)
\(110\) 0 0
\(111\) 161.676i 1.45654i
\(112\) 0 0
\(113\) 66.7186 0.590430 0.295215 0.955431i \(-0.404609\pi\)
0.295215 + 0.955431i \(0.404609\pi\)
\(114\) 0 0
\(115\) 185.993i 1.61733i
\(116\) 0 0
\(117\) 39.0809 0.334025
\(118\) 0 0
\(119\) 3.70865 0.0311651
\(120\) 0 0
\(121\) 233.517 1.92989
\(122\) 0 0
\(123\) 10.9743i 0.0892223i
\(124\) 0 0
\(125\) 56.9513i 0.455610i
\(126\) 0 0
\(127\) −58.2177 −0.458407 −0.229203 0.973379i \(-0.573612\pi\)
−0.229203 + 0.973379i \(0.573612\pi\)
\(128\) 0 0
\(129\) 139.349i 1.08022i
\(130\) 0 0
\(131\) 201.499i 1.53816i 0.639152 + 0.769080i \(0.279285\pi\)
−0.639152 + 0.769080i \(0.720715\pi\)
\(132\) 0 0
\(133\) −53.6501 −0.403384
\(134\) 0 0
\(135\) 188.478i 1.39613i
\(136\) 0 0
\(137\) −21.4574 −0.156623 −0.0783116 0.996929i \(-0.524953\pi\)
−0.0783116 + 0.996929i \(0.524953\pi\)
\(138\) 0 0
\(139\) 171.899i 1.23668i −0.785910 0.618341i \(-0.787805\pi\)
0.785910 0.618341i \(-0.212195\pi\)
\(140\) 0 0
\(141\) 112.744 0.799605
\(142\) 0 0
\(143\) −250.112 −1.74904
\(144\) 0 0
\(145\) 24.3106 0.167659
\(146\) 0 0
\(147\) 106.988 0.727811
\(148\) 0 0
\(149\) 62.3906 0.418729 0.209364 0.977838i \(-0.432861\pi\)
0.209364 + 0.977838i \(0.432861\pi\)
\(150\) 0 0
\(151\) 125.217i 0.829255i −0.909991 0.414627i \(-0.863912\pi\)
0.909991 0.414627i \(-0.136088\pi\)
\(152\) 0 0
\(153\) 4.63911 0.0303210
\(154\) 0 0
\(155\) 234.279 1.51148
\(156\) 0 0
\(157\) 85.6193i 0.545346i −0.962107 0.272673i \(-0.912092\pi\)
0.962107 0.272673i \(-0.0879077\pi\)
\(158\) 0 0
\(159\) 89.1203i 0.560505i
\(160\) 0 0
\(161\) 68.2192 0.423721
\(162\) 0 0
\(163\) 35.1502i 0.215645i 0.994170 + 0.107823i \(0.0343878\pi\)
−0.994170 + 0.107823i \(0.965612\pi\)
\(164\) 0 0
\(165\) 297.167i 1.80101i
\(166\) 0 0
\(167\) 110.540i 0.661918i 0.943645 + 0.330959i \(0.107372\pi\)
−0.943645 + 0.330959i \(0.892628\pi\)
\(168\) 0 0
\(169\) 7.45440 0.0441089
\(170\) 0 0
\(171\) −67.1104 −0.392458
\(172\) 0 0
\(173\) 96.0218i 0.555039i 0.960720 + 0.277520i \(0.0895124\pi\)
−0.960720 + 0.277520i \(0.910488\pi\)
\(174\) 0 0
\(175\) 37.9101 0.216629
\(176\) 0 0
\(177\) −151.960 −0.858533
\(178\) 0 0
\(179\) 296.216 1.65484 0.827420 0.561583i \(-0.189808\pi\)
0.827420 + 0.561583i \(0.189808\pi\)
\(180\) 0 0
\(181\) 249.843 1.38035 0.690175 0.723643i \(-0.257534\pi\)
0.690175 + 0.723643i \(0.257534\pi\)
\(182\) 0 0
\(183\) −117.292 −0.640943
\(184\) 0 0
\(185\) 421.214 2.27683
\(186\) 0 0
\(187\) −29.6896 −0.158768
\(188\) 0 0
\(189\) −69.1308 −0.365771
\(190\) 0 0
\(191\) −37.3020 −0.195298 −0.0976491 0.995221i \(-0.531132\pi\)
−0.0976491 + 0.995221i \(0.531132\pi\)
\(192\) 0 0
\(193\) −221.523 −1.14779 −0.573894 0.818930i \(-0.694568\pi\)
−0.573894 + 0.818930i \(0.694568\pi\)
\(194\) 0 0
\(195\) 209.652i 1.07514i
\(196\) 0 0
\(197\) 210.456 1.06831 0.534153 0.845388i \(-0.320631\pi\)
0.534153 + 0.845388i \(0.320631\pi\)
\(198\) 0 0
\(199\) 245.711i 1.23473i 0.786677 + 0.617365i \(0.211800\pi\)
−0.786677 + 0.617365i \(0.788200\pi\)
\(200\) 0 0
\(201\) 128.716 0.640379
\(202\) 0 0
\(203\) 8.91675i 0.0439249i
\(204\) 0 0
\(205\) −28.5913 −0.139470
\(206\) 0 0
\(207\) 85.3347 0.412245
\(208\) 0 0
\(209\) 429.496 2.05501
\(210\) 0 0
\(211\) 249.766 1.18373 0.591863 0.806039i \(-0.298393\pi\)
0.591863 + 0.806039i \(0.298393\pi\)
\(212\) 0 0
\(213\) 57.2978 0.269004
\(214\) 0 0
\(215\) −363.044 −1.68858
\(216\) 0 0
\(217\) 85.9298i 0.395990i
\(218\) 0 0
\(219\) 287.998i 1.31506i
\(220\) 0 0
\(221\) 20.9461 0.0947786
\(222\) 0 0
\(223\) −6.64740 −0.0298090 −0.0149045 0.999889i \(-0.504744\pi\)
−0.0149045 + 0.999889i \(0.504744\pi\)
\(224\) 0 0
\(225\) 47.4214 0.210762
\(226\) 0 0
\(227\) 334.659i 1.47427i −0.675745 0.737135i \(-0.736178\pi\)
0.675745 0.737135i \(-0.263822\pi\)
\(228\) 0 0
\(229\) 212.545i 0.928145i 0.885797 + 0.464073i \(0.153612\pi\)
−0.885797 + 0.464073i \(0.846388\pi\)
\(230\) 0 0
\(231\) 108.996 0.471845
\(232\) 0 0
\(233\) 35.5874i 0.152736i 0.997080 + 0.0763678i \(0.0243323\pi\)
−0.997080 + 0.0763678i \(0.975668\pi\)
\(234\) 0 0
\(235\) 293.731i 1.24992i
\(236\) 0 0
\(237\) 228.455i 0.963946i
\(238\) 0 0
\(239\) 228.954i 0.957967i 0.877824 + 0.478984i \(0.158995\pi\)
−0.877824 + 0.478984i \(0.841005\pi\)
\(240\) 0 0
\(241\) 455.068 1.88825 0.944124 0.329589i \(-0.106910\pi\)
0.944124 + 0.329589i \(0.106910\pi\)
\(242\) 0 0
\(243\) −151.646 −0.624058
\(244\) 0 0
\(245\) 278.735i 1.13769i
\(246\) 0 0
\(247\) −303.010 −1.22676
\(248\) 0 0
\(249\) 104.466i 0.419541i
\(250\) 0 0
\(251\) −313.152 −1.24762 −0.623808 0.781577i \(-0.714415\pi\)
−0.623808 + 0.781577i \(0.714415\pi\)
\(252\) 0 0
\(253\) −546.129 −2.15861
\(254\) 0 0
\(255\) 24.8867i 0.0975951i
\(256\) 0 0
\(257\) 456.068 1.77458 0.887292 0.461209i \(-0.152584\pi\)
0.887292 + 0.461209i \(0.152584\pi\)
\(258\) 0 0
\(259\) 154.495i 0.596504i
\(260\) 0 0
\(261\) 11.1539i 0.0427352i
\(262\) 0 0
\(263\) 141.763i 0.539024i −0.962997 0.269512i \(-0.913138\pi\)
0.962997 0.269512i \(-0.0868624\pi\)
\(264\) 0 0
\(265\) 232.184 0.876166
\(266\) 0 0
\(267\) 175.869i 0.658687i
\(268\) 0 0
\(269\) 241.408 0.897428 0.448714 0.893675i \(-0.351882\pi\)
0.448714 + 0.893675i \(0.351882\pi\)
\(270\) 0 0
\(271\) 118.692 0.437980 0.218990 0.975727i \(-0.429724\pi\)
0.218990 + 0.975727i \(0.429724\pi\)
\(272\) 0 0
\(273\) −76.8969 −0.281674
\(274\) 0 0
\(275\) −303.490 −1.10360
\(276\) 0 0
\(277\) 391.656 1.41392 0.706960 0.707253i \(-0.250066\pi\)
0.706960 + 0.707253i \(0.250066\pi\)
\(278\) 0 0
\(279\) 107.489i 0.385264i
\(280\) 0 0
\(281\) 138.410 0.492561 0.246281 0.969199i \(-0.420792\pi\)
0.246281 + 0.969199i \(0.420792\pi\)
\(282\) 0 0
\(283\) 502.473i 1.77552i 0.460304 + 0.887761i \(0.347740\pi\)
−0.460304 + 0.887761i \(0.652260\pi\)
\(284\) 0 0
\(285\) 360.017i 1.26322i
\(286\) 0 0
\(287\) 10.4868i 0.0365395i
\(288\) 0 0
\(289\) −286.514 −0.991397
\(290\) 0 0
\(291\) 457.999i 1.57388i
\(292\) 0 0
\(293\) 449.339i 1.53358i 0.641898 + 0.766790i \(0.278147\pi\)
−0.641898 + 0.766790i \(0.721853\pi\)
\(294\) 0 0
\(295\) 395.900i 1.34204i
\(296\) 0 0
\(297\) 553.427 1.86339
\(298\) 0 0
\(299\) 385.295 1.28861
\(300\) 0 0
\(301\) 133.159i 0.442388i
\(302\) 0 0
\(303\) −242.483 −0.800274
\(304\) 0 0
\(305\) 305.581i 1.00190i
\(306\) 0 0
\(307\) 470.310i 1.53195i 0.642868 + 0.765977i \(0.277744\pi\)
−0.642868 + 0.765977i \(0.722256\pi\)
\(308\) 0 0
\(309\) 39.6000 0.128155
\(310\) 0 0
\(311\) 512.584i 1.64818i −0.566459 0.824090i \(-0.691687\pi\)
0.566459 0.824090i \(-0.308313\pi\)
\(312\) 0 0
\(313\) 337.796i 1.07922i −0.841915 0.539610i \(-0.818572\pi\)
0.841915 0.539610i \(-0.181428\pi\)
\(314\) 0 0
\(315\) 44.3708i 0.140860i
\(316\) 0 0
\(317\) 114.280i 0.360506i 0.983620 + 0.180253i \(0.0576916\pi\)
−0.983620 + 0.180253i \(0.942308\pi\)
\(318\) 0 0
\(319\) 71.3831i 0.223772i
\(320\) 0 0
\(321\) −473.104 −1.47384
\(322\) 0 0
\(323\) −35.9689 −0.111359
\(324\) 0 0
\(325\) 214.112 0.658807
\(326\) 0 0
\(327\) 451.597i 1.38103i
\(328\) 0 0
\(329\) 107.736 0.327465
\(330\) 0 0
\(331\) 76.8109i 0.232057i −0.993246 0.116029i \(-0.962984\pi\)
0.993246 0.116029i \(-0.0370164\pi\)
\(332\) 0 0
\(333\) 193.256i 0.580347i
\(334\) 0 0
\(335\) 335.342i 1.00102i
\(336\) 0 0
\(337\) 280.875 0.833456 0.416728 0.909031i \(-0.363177\pi\)
0.416728 + 0.909031i \(0.363177\pi\)
\(338\) 0 0
\(339\) −164.214 −0.484407
\(340\) 0 0
\(341\) 687.912i 2.01734i
\(342\) 0 0
\(343\) 217.482 0.634057
\(344\) 0 0
\(345\) 457.782i 1.32690i
\(346\) 0 0
\(347\) 425.988 1.22763 0.613816 0.789449i \(-0.289634\pi\)
0.613816 + 0.789449i \(0.289634\pi\)
\(348\) 0 0
\(349\) −204.290 −0.585359 −0.292679 0.956211i \(-0.594547\pi\)
−0.292679 + 0.956211i \(0.594547\pi\)
\(350\) 0 0
\(351\) −390.443 −1.11237
\(352\) 0 0
\(353\) 403.004i 1.14165i 0.821070 + 0.570827i \(0.193377\pi\)
−0.821070 + 0.570827i \(0.806623\pi\)
\(354\) 0 0
\(355\) 149.277i 0.420499i
\(356\) 0 0
\(357\) −9.12807 −0.0255688
\(358\) 0 0
\(359\) 94.6757i 0.263721i 0.991268 + 0.131860i \(0.0420950\pi\)
−0.991268 + 0.131860i \(0.957905\pi\)
\(360\) 0 0
\(361\) 159.334 0.441368
\(362\) 0 0
\(363\) −574.753 −1.58334
\(364\) 0 0
\(365\) 750.317 2.05566
\(366\) 0 0
\(367\) 598.444i 1.63064i −0.579013 0.815318i \(-0.696562\pi\)
0.579013 0.815318i \(-0.303438\pi\)
\(368\) 0 0
\(369\) 13.1179i 0.0355498i
\(370\) 0 0
\(371\) 85.1614i 0.229546i
\(372\) 0 0
\(373\) 511.665i 1.37176i −0.727716 0.685878i \(-0.759418\pi\)
0.727716 0.685878i \(-0.240582\pi\)
\(374\) 0 0
\(375\) 140.174i 0.373797i
\(376\) 0 0
\(377\) 50.3609i 0.133583i
\(378\) 0 0
\(379\) −101.372 −0.267471 −0.133735 0.991017i \(-0.542697\pi\)
−0.133735 + 0.991017i \(0.542697\pi\)
\(380\) 0 0
\(381\) 143.291 0.376091
\(382\) 0 0
\(383\) −548.729 −1.43271 −0.716356 0.697735i \(-0.754191\pi\)
−0.716356 + 0.697735i \(0.754191\pi\)
\(384\) 0 0
\(385\) 283.966i 0.737575i
\(386\) 0 0
\(387\) 166.567i 0.430406i
\(388\) 0 0
\(389\) 169.196i 0.434950i 0.976066 + 0.217475i \(0.0697821\pi\)
−0.976066 + 0.217475i \(0.930218\pi\)
\(390\) 0 0
\(391\) 45.7365 0.116973
\(392\) 0 0
\(393\) 495.948i 1.26195i
\(394\) 0 0
\(395\) 595.191 1.50681
\(396\) 0 0
\(397\) 281.507i 0.709085i −0.935040 0.354543i \(-0.884637\pi\)
0.935040 0.354543i \(-0.115363\pi\)
\(398\) 0 0
\(399\) 132.049 0.330949
\(400\) 0 0
\(401\) −38.2780 −0.0954564 −0.0477282 0.998860i \(-0.515198\pi\)
−0.0477282 + 0.998860i \(0.515198\pi\)
\(402\) 0 0
\(403\) 485.323i 1.20427i
\(404\) 0 0
\(405\) 294.110i 0.726198i
\(406\) 0 0
\(407\) 1236.81i 3.03884i
\(408\) 0 0
\(409\) 206.313 0.504433 0.252216 0.967671i \(-0.418841\pi\)
0.252216 + 0.967671i \(0.418841\pi\)
\(410\) 0 0
\(411\) 52.8129 0.128499
\(412\) 0 0
\(413\) −145.210 −0.351598
\(414\) 0 0
\(415\) 272.163 0.655814
\(416\) 0 0
\(417\) 423.093i 1.01461i
\(418\) 0 0
\(419\) 617.752i 1.47435i −0.675703 0.737174i \(-0.736160\pi\)
0.675703 0.737174i \(-0.263840\pi\)
\(420\) 0 0
\(421\) −116.885 −0.277638 −0.138819 0.990318i \(-0.544331\pi\)
−0.138819 + 0.990318i \(0.544331\pi\)
\(422\) 0 0
\(423\) 134.766 0.318596
\(424\) 0 0
\(425\) 25.4163 0.0598030
\(426\) 0 0
\(427\) −112.082 −0.262488
\(428\) 0 0
\(429\) 615.599 1.43496
\(430\) 0 0
\(431\) 306.125i 0.710267i −0.934816 0.355133i \(-0.884435\pi\)
0.934816 0.355133i \(-0.115565\pi\)
\(432\) 0 0
\(433\) 190.174i 0.439200i 0.975590 + 0.219600i \(0.0704752\pi\)
−0.975590 + 0.219600i \(0.929525\pi\)
\(434\) 0 0
\(435\) −59.8355 −0.137553
\(436\) 0 0
\(437\) −661.634 −1.51404
\(438\) 0 0
\(439\) 817.839 1.86296 0.931480 0.363792i \(-0.118518\pi\)
0.931480 + 0.363792i \(0.118518\pi\)
\(440\) 0 0
\(441\) 127.885 0.289990
\(442\) 0 0
\(443\) 275.040i 0.620858i 0.950596 + 0.310429i \(0.100473\pi\)
−0.950596 + 0.310429i \(0.899527\pi\)
\(444\) 0 0
\(445\) 458.190 1.02964
\(446\) 0 0
\(447\) −153.561 −0.343538
\(448\) 0 0
\(449\) 87.5874 0.195072 0.0975361 0.995232i \(-0.468904\pi\)
0.0975361 + 0.995232i \(0.468904\pi\)
\(450\) 0 0
\(451\) 83.9525i 0.186147i
\(452\) 0 0
\(453\) 308.197i 0.680346i
\(454\) 0 0
\(455\) 200.339i 0.440305i
\(456\) 0 0
\(457\) 441.844i 0.966835i 0.875390 + 0.483418i \(0.160605\pi\)
−0.875390 + 0.483418i \(0.839395\pi\)
\(458\) 0 0
\(459\) −46.3477 −0.100975
\(460\) 0 0
\(461\) −72.0062 −0.156196 −0.0780979 0.996946i \(-0.524885\pi\)
−0.0780979 + 0.996946i \(0.524885\pi\)
\(462\) 0 0
\(463\) 13.9925i 0.0302215i −0.999886 0.0151107i \(-0.995190\pi\)
0.999886 0.0151107i \(-0.00481008\pi\)
\(464\) 0 0
\(465\) −576.629 −1.24006
\(466\) 0 0
\(467\) −565.101 −1.21007 −0.605033 0.796200i \(-0.706840\pi\)
−0.605033 + 0.796200i \(0.706840\pi\)
\(468\) 0 0
\(469\) 122.998 0.262257
\(470\) 0 0
\(471\) 210.734i 0.447419i
\(472\) 0 0
\(473\) 1066.00i 2.25371i
\(474\) 0 0
\(475\) −367.677 −0.774057
\(476\) 0 0
\(477\) 106.528i 0.223328i
\(478\) 0 0
\(479\) 590.304i 1.23237i 0.787602 + 0.616184i \(0.211322\pi\)
−0.787602 + 0.616184i \(0.788678\pi\)
\(480\) 0 0
\(481\) 872.569i 1.81407i
\(482\) 0 0
\(483\) −167.907 −0.347634
\(484\) 0 0
\(485\) −1193.22 −2.46025
\(486\) 0 0
\(487\) 345.252i 0.708937i −0.935068 0.354469i \(-0.884662\pi\)
0.935068 0.354469i \(-0.115338\pi\)
\(488\) 0 0
\(489\) 86.5148i 0.176922i
\(490\) 0 0
\(491\) 99.1684 0.201972 0.100986 0.994888i \(-0.467800\pi\)
0.100986 + 0.994888i \(0.467800\pi\)
\(492\) 0 0
\(493\) 5.97810i 0.0121260i
\(494\) 0 0
\(495\) 355.211i 0.717597i
\(496\) 0 0
\(497\) 54.7526 0.110166
\(498\) 0 0
\(499\) 866.813i 1.73710i −0.495601 0.868550i \(-0.665052\pi\)
0.495601 0.868550i \(-0.334948\pi\)
\(500\) 0 0
\(501\) 272.072i 0.543058i
\(502\) 0 0
\(503\) −782.722 −1.55611 −0.778053 0.628198i \(-0.783793\pi\)
−0.778053 + 0.628198i \(0.783793\pi\)
\(504\) 0 0
\(505\) 631.738i 1.25097i
\(506\) 0 0
\(507\) −18.3475 −0.0361883
\(508\) 0 0
\(509\) −814.862 −1.60091 −0.800454 0.599395i \(-0.795408\pi\)
−0.800454 + 0.599395i \(0.795408\pi\)
\(510\) 0 0
\(511\) 275.205i 0.538561i
\(512\) 0 0
\(513\) 670.475 1.30697
\(514\) 0 0
\(515\) 103.169i 0.200329i
\(516\) 0 0
\(517\) −862.482 −1.66824
\(518\) 0 0
\(519\) 236.338i 0.455371i
\(520\) 0 0
\(521\) −732.987 −1.40688 −0.703442 0.710753i \(-0.748355\pi\)
−0.703442 + 0.710753i \(0.748355\pi\)
\(522\) 0 0
\(523\) 768.191i 1.46882i −0.678708 0.734408i \(-0.737460\pi\)
0.678708 0.734408i \(-0.262540\pi\)
\(524\) 0 0
\(525\) −93.3079 −0.177729
\(526\) 0 0
\(527\) 57.6103i 0.109318i
\(528\) 0 0
\(529\) 312.305 0.590368
\(530\) 0 0
\(531\) −181.642 −0.342075
\(532\) 0 0
\(533\) 59.2286i 0.111123i
\(534\) 0 0
\(535\) 1232.57i 2.30387i
\(536\) 0 0
\(537\) −729.075 −1.35768
\(538\) 0 0
\(539\) −818.448 −1.51846
\(540\) 0 0
\(541\) −261.921 −0.484143 −0.242071 0.970258i \(-0.577827\pi\)
−0.242071 + 0.970258i \(0.577827\pi\)
\(542\) 0 0
\(543\) −614.937 −1.13248
\(544\) 0 0
\(545\) −1176.54 −2.15879
\(546\) 0 0
\(547\) 539.196i 0.985733i 0.870105 + 0.492866i \(0.164051\pi\)
−0.870105 + 0.492866i \(0.835949\pi\)
\(548\) 0 0
\(549\) −140.203 −0.255378
\(550\) 0 0
\(551\) 86.4805i 0.156952i
\(552\) 0 0
\(553\) 218.307i 0.394768i
\(554\) 0 0
\(555\) −1036.73 −1.86798
\(556\) 0 0
\(557\) −530.054 −0.951622 −0.475811 0.879548i \(-0.657845\pi\)
−0.475811 + 0.879548i \(0.657845\pi\)
\(558\) 0 0
\(559\) 752.067i 1.34538i
\(560\) 0 0
\(561\) 73.0748 0.130258
\(562\) 0 0
\(563\) −561.840 + 36.1145i −0.997940 + 0.0641466i
\(564\) 0 0
\(565\) 427.824i 0.757211i
\(566\) 0 0
\(567\) 107.875 0.190256
\(568\) 0 0
\(569\) 43.1849i 0.0758961i 0.999280 + 0.0379480i \(0.0120821\pi\)
−0.999280 + 0.0379480i \(0.987918\pi\)
\(570\) 0 0
\(571\) 398.314i 0.697572i 0.937202 + 0.348786i \(0.113406\pi\)
−0.937202 + 0.348786i \(0.886594\pi\)
\(572\) 0 0
\(573\) 91.8110 0.160229
\(574\) 0 0
\(575\) 467.522 0.813082
\(576\) 0 0
\(577\) 364.314i 0.631393i 0.948860 + 0.315696i \(0.102238\pi\)
−0.948860 + 0.315696i \(0.897762\pi\)
\(578\) 0 0
\(579\) 545.233 0.941680
\(580\) 0 0
\(581\) 99.8251i 0.171816i
\(582\) 0 0
\(583\) 681.760i 1.16940i
\(584\) 0 0
\(585\) 250.602i 0.428379i
\(586\) 0 0
\(587\) 43.3734i 0.0738899i −0.999317 0.0369449i \(-0.988237\pi\)
0.999317 0.0369449i \(-0.0117626\pi\)
\(588\) 0 0
\(589\) 833.403i 1.41495i
\(590\) 0 0
\(591\) −517.995 −0.876471
\(592\) 0 0
\(593\) 749.953 1.26468 0.632338 0.774692i \(-0.282095\pi\)
0.632338 + 0.774692i \(0.282095\pi\)
\(594\) 0 0
\(595\) 23.7812i 0.0399685i
\(596\) 0 0
\(597\) 604.767i 1.01301i
\(598\) 0 0
\(599\) 509.824 0.851125 0.425562 0.904929i \(-0.360076\pi\)
0.425562 + 0.904929i \(0.360076\pi\)
\(600\) 0 0
\(601\) 812.631i 1.35213i 0.736841 + 0.676066i \(0.236316\pi\)
−0.736841 + 0.676066i \(0.763684\pi\)
\(602\) 0 0
\(603\) 153.857 0.255153
\(604\) 0 0
\(605\) 1497.40i 2.47504i
\(606\) 0 0
\(607\) 199.220 0.328205 0.164103 0.986443i \(-0.447527\pi\)
0.164103 + 0.986443i \(0.447527\pi\)
\(608\) 0 0
\(609\) 21.9467i 0.0360373i
\(610\) 0 0
\(611\) 608.482 0.995879
\(612\) 0 0
\(613\) 51.0999i 0.0833603i 0.999131 + 0.0416801i \(0.0132710\pi\)
−0.999131 + 0.0416801i \(0.986729\pi\)
\(614\) 0 0
\(615\) 70.3716 0.114425
\(616\) 0 0
\(617\) 634.902i 1.02901i 0.857486 + 0.514507i \(0.172025\pi\)
−0.857486 + 0.514507i \(0.827975\pi\)
\(618\) 0 0
\(619\) 153.822i 0.248501i 0.992251 + 0.124250i \(0.0396526\pi\)
−0.992251 + 0.124250i \(0.960347\pi\)
\(620\) 0 0
\(621\) −852.547 −1.37286
\(622\) 0 0
\(623\) 168.057i 0.269754i
\(624\) 0 0
\(625\) −768.156 −1.22905
\(626\) 0 0
\(627\) −1057.12 −1.68599
\(628\) 0 0
\(629\) 103.579i 0.164672i
\(630\) 0 0
\(631\) 150.792 0.238973 0.119487 0.992836i \(-0.461875\pi\)
0.119487 + 0.992836i \(0.461875\pi\)
\(632\) 0 0
\(633\) −614.747 −0.971165
\(634\) 0 0
\(635\) 373.313i 0.587895i
\(636\) 0 0
\(637\) 577.416 0.906462
\(638\) 0 0
\(639\) 68.4895 0.107182
\(640\) 0 0
\(641\) 269.936i 0.421118i −0.977581 0.210559i \(-0.932472\pi\)
0.977581 0.210559i \(-0.0675283\pi\)
\(642\) 0 0
\(643\) 844.578i 1.31350i −0.754110 0.656748i \(-0.771931\pi\)
0.754110 0.656748i \(-0.228069\pi\)
\(644\) 0 0
\(645\) 893.557 1.38536
\(646\) 0 0
\(647\) −677.202 −1.04668 −0.523340 0.852124i \(-0.675314\pi\)
−0.523340 + 0.852124i \(0.675314\pi\)
\(648\) 0 0
\(649\) 1162.48 1.79119
\(650\) 0 0
\(651\) 211.498i 0.324882i
\(652\) 0 0
\(653\) 1145.40 1.75405 0.877027 0.480440i \(-0.159523\pi\)
0.877027 + 0.480440i \(0.159523\pi\)
\(654\) 0 0
\(655\) 1292.09 1.97265
\(656\) 0 0
\(657\) 344.251i 0.523974i
\(658\) 0 0
\(659\) 555.216i 0.842512i 0.906942 + 0.421256i \(0.138411\pi\)
−0.906942 + 0.421256i \(0.861589\pi\)
\(660\) 0 0
\(661\) 824.671i 1.24761i 0.781580 + 0.623806i \(0.214414\pi\)
−0.781580 + 0.623806i \(0.785586\pi\)
\(662\) 0 0
\(663\) −51.5544 −0.0777592
\(664\) 0 0
\(665\) 344.025i 0.517330i
\(666\) 0 0
\(667\) 109.965i 0.164865i
\(668\) 0 0
\(669\) 16.3612 0.0244562
\(670\) 0 0
\(671\) 897.275 1.33722
\(672\) 0 0
\(673\) 651.956 0.968731 0.484365 0.874866i \(-0.339051\pi\)
0.484365 + 0.874866i \(0.339051\pi\)
\(674\) 0 0
\(675\) −473.770 −0.701881
\(676\) 0 0
\(677\) 954.052i 1.40923i −0.709588 0.704617i \(-0.751119\pi\)
0.709588 0.704617i \(-0.248881\pi\)
\(678\) 0 0
\(679\) 437.654i 0.644557i
\(680\) 0 0
\(681\) 823.695i 1.20954i
\(682\) 0 0
\(683\) −491.572 −0.719725 −0.359862 0.933005i \(-0.617176\pi\)
−0.359862 + 0.933005i \(0.617176\pi\)
\(684\) 0 0
\(685\) 137.593i 0.200865i
\(686\) 0 0
\(687\) 523.136i 0.761479i
\(688\) 0 0
\(689\) 480.983i 0.698088i
\(690\) 0 0
\(691\) 903.372i 1.30734i −0.756780 0.653670i \(-0.773228\pi\)
0.756780 0.653670i \(-0.226772\pi\)
\(692\) 0 0
\(693\) 130.286 0.188002
\(694\) 0 0
\(695\) −1102.28 −1.58601
\(696\) 0 0
\(697\) 7.03075i 0.0100872i
\(698\) 0 0
\(699\) 87.5909i 0.125309i
\(700\) 0 0
\(701\) 864.232i 1.23286i 0.787411 + 0.616428i \(0.211421\pi\)
−0.787411 + 0.616428i \(0.788579\pi\)
\(702\) 0 0
\(703\) 1498.39i 2.13142i
\(704\) 0 0
\(705\) 722.959i 1.02547i
\(706\) 0 0
\(707\) −231.712 −0.327739
\(708\) 0 0
\(709\) 661.895 0.933562 0.466781 0.884373i \(-0.345414\pi\)
0.466781 + 0.884373i \(0.345414\pi\)
\(710\) 0 0
\(711\) 273.078i 0.384076i
\(712\) 0 0
\(713\) 1059.72i 1.48628i
\(714\) 0 0
\(715\) 1603.81i 2.24309i
\(716\) 0 0
\(717\) 563.523i 0.785946i
\(718\) 0 0
\(719\) 61.6252 0.0857096 0.0428548 0.999081i \(-0.486355\pi\)
0.0428548 + 0.999081i \(0.486355\pi\)
\(720\) 0 0
\(721\) 37.8409 0.0524839
\(722\) 0 0
\(723\) −1120.06 −1.54918
\(724\) 0 0
\(725\) 61.1086i 0.0842878i
\(726\) 0 0
\(727\) 1383.59i 1.90315i 0.307422 + 0.951573i \(0.400534\pi\)
−0.307422 + 0.951573i \(0.599466\pi\)
\(728\) 0 0
\(729\) 786.039 1.07824
\(730\) 0 0
\(731\) 89.2743i 0.122126i
\(732\) 0 0
\(733\) −247.773 −0.338026 −0.169013 0.985614i \(-0.554058\pi\)
−0.169013 + 0.985614i \(0.554058\pi\)
\(734\) 0 0
\(735\) 686.048i 0.933399i
\(736\) 0 0
\(737\) −984.664 −1.33604
\(738\) 0 0
\(739\) −231.878 −0.313773 −0.156886 0.987617i \(-0.550146\pi\)
−0.156886 + 0.987617i \(0.550146\pi\)
\(740\) 0 0
\(741\) 745.797 1.00647
\(742\) 0 0
\(743\) 135.054i 0.181769i −0.995861 0.0908843i \(-0.971031\pi\)
0.995861 0.0908843i \(-0.0289693\pi\)
\(744\) 0 0
\(745\) 400.072i 0.537009i
\(746\) 0 0
\(747\) 124.870i 0.167162i
\(748\) 0 0
\(749\) −452.088 −0.603589
\(750\) 0 0
\(751\) −657.248 −0.875163 −0.437582 0.899179i \(-0.644165\pi\)
−0.437582 + 0.899179i \(0.644165\pi\)
\(752\) 0 0
\(753\) 770.758 1.02358
\(754\) 0 0
\(755\) −802.941 −1.06350
\(756\) 0 0
\(757\) 1375.45 1.81697 0.908484 0.417919i \(-0.137241\pi\)
0.908484 + 0.417919i \(0.137241\pi\)
\(758\) 0 0
\(759\) 1344.18 1.77099
\(760\) 0 0
\(761\) 945.145i 1.24198i 0.783819 + 0.620989i \(0.213269\pi\)
−0.783819 + 0.620989i \(0.786731\pi\)
\(762\) 0 0
\(763\) 431.536i 0.565578i
\(764\) 0 0
\(765\) 29.7477i 0.0388859i
\(766\) 0 0
\(767\) −820.131 −1.06927
\(768\) 0 0
\(769\) 909.580i 1.18281i 0.806375 + 0.591404i \(0.201426\pi\)
−0.806375 + 0.591404i \(0.798574\pi\)
\(770\) 0 0
\(771\) −1122.52 −1.45592
\(772\) 0 0
\(773\) −1294.26 −1.67433 −0.837167 0.546948i \(-0.815790\pi\)
−0.837167 + 0.546948i \(0.815790\pi\)
\(774\) 0 0
\(775\) 588.898i 0.759868i
\(776\) 0 0
\(777\) 380.256i 0.489390i
\(778\) 0 0
\(779\) 101.708i 0.130563i
\(780\) 0 0
\(781\) −438.322 −0.561232
\(782\) 0 0
\(783\) 111.434i 0.142317i
\(784\) 0 0
\(785\) −549.023 −0.699393
\(786\) 0 0
\(787\) 1204.82i 1.53090i 0.643496 + 0.765449i \(0.277483\pi\)
−0.643496 + 0.765449i \(0.722517\pi\)
\(788\) 0 0
\(789\) 348.921i 0.442232i
\(790\) 0 0
\(791\) −156.919 −0.198381
\(792\) 0 0
\(793\) −633.029 −0.798271
\(794\) 0 0
\(795\) −571.472 −0.718833
\(796\) 0 0
\(797\) 326.182i 0.409262i −0.978839 0.204631i \(-0.934401\pi\)
0.978839 0.204631i \(-0.0655995\pi\)
\(798\) 0 0
\(799\) 72.2300 0.0904005
\(800\) 0 0
\(801\) 210.221i 0.262448i
\(802\) 0 0
\(803\) 2203.15i 2.74365i
\(804\) 0 0
\(805\) 437.447i 0.543412i
\(806\) 0 0
\(807\) −594.176 −0.736278
\(808\) 0 0
\(809\) 157.001 0.194069 0.0970343 0.995281i \(-0.469064\pi\)
0.0970343 + 0.995281i \(0.469064\pi\)
\(810\) 0 0
\(811\) −737.734 −0.909659 −0.454830 0.890578i \(-0.650300\pi\)
−0.454830 + 0.890578i \(0.650300\pi\)
\(812\) 0 0
\(813\) −292.137 −0.359332
\(814\) 0 0
\(815\) 225.396 0.276559
\(816\) 0 0
\(817\) 1291.46i 1.58074i
\(818\) 0 0
\(819\) −91.9167 −0.112230
\(820\) 0 0
\(821\) −483.724 −0.589189 −0.294594 0.955622i \(-0.595185\pi\)
−0.294594 + 0.955622i \(0.595185\pi\)
\(822\) 0 0
\(823\) 351.661i 0.427291i −0.976911 0.213646i \(-0.931466\pi\)
0.976911 0.213646i \(-0.0685338\pi\)
\(824\) 0 0
\(825\) 746.977 0.905426
\(826\) 0 0
\(827\) 537.116i 0.649475i −0.945804 0.324738i \(-0.894724\pi\)
0.945804 0.324738i \(-0.105276\pi\)
\(828\) 0 0
\(829\) 342.852i 0.413573i −0.978386 0.206787i \(-0.933699\pi\)
0.978386 0.206787i \(-0.0663006\pi\)
\(830\) 0 0
\(831\) −963.980 −1.16002
\(832\) 0 0
\(833\) 68.5423 0.0822837
\(834\) 0 0
\(835\) 708.826 0.848894
\(836\) 0 0
\(837\) 1073.88i 1.28301i
\(838\) 0 0
\(839\) 347.140 0.413755 0.206877 0.978367i \(-0.433670\pi\)
0.206877 + 0.978367i \(0.433670\pi\)
\(840\) 0 0
\(841\) 826.627 0.982909
\(842\) 0 0
\(843\) −340.667 −0.404112
\(844\) 0 0
\(845\) 47.8004i 0.0565685i
\(846\) 0 0
\(847\) −549.222 −0.648432
\(848\) 0 0
\(849\) 1236.73i 1.45669i
\(850\) 0 0
\(851\) 1905.29i 2.23888i
\(852\) 0 0
\(853\) 370.797i 0.434697i 0.976094 + 0.217349i \(0.0697409\pi\)
−0.976094 + 0.217349i \(0.930259\pi\)
\(854\) 0 0
\(855\) 430.337i 0.503318i
\(856\) 0 0
\(857\) 421.331i 0.491635i −0.969316 0.245817i \(-0.920944\pi\)
0.969316 0.245817i \(-0.0790564\pi\)
\(858\) 0 0
\(859\) 386.117 0.449496 0.224748 0.974417i \(-0.427844\pi\)
0.224748 + 0.974417i \(0.427844\pi\)
\(860\) 0 0
\(861\) 25.8112i 0.0299782i
\(862\) 0 0
\(863\) 452.819 0.524704 0.262352 0.964972i \(-0.415502\pi\)
0.262352 + 0.964972i \(0.415502\pi\)
\(864\) 0 0
\(865\) 615.728 0.711824
\(866\) 0 0
\(867\) 705.194 0.813372
\(868\) 0 0
\(869\) 1747.66i 2.01111i
\(870\) 0 0
\(871\) 694.682 0.797568
\(872\) 0 0
\(873\) 547.457i 0.627099i
\(874\) 0 0
\(875\) 133.947i 0.153082i
\(876\) 0 0
\(877\) 1525.02 1.73891 0.869454 0.494014i \(-0.164471\pi\)
0.869454 + 0.494014i \(0.164471\pi\)
\(878\) 0 0
\(879\) 1105.95i 1.25820i
\(880\) 0 0
\(881\) −1124.87 −1.27681 −0.638403 0.769703i \(-0.720405\pi\)
−0.638403 + 0.769703i \(0.720405\pi\)
\(882\) 0 0
\(883\) 615.507i 0.697063i −0.937297 0.348532i \(-0.886680\pi\)
0.937297 0.348532i \(-0.113320\pi\)
\(884\) 0 0
\(885\) 974.427i 1.10105i
\(886\) 0 0
\(887\) 1223.33 1.37918 0.689588 0.724202i \(-0.257792\pi\)
0.689588 + 0.724202i \(0.257792\pi\)
\(888\) 0 0
\(889\) 136.926 0.154022
\(890\) 0 0
\(891\) −863.594 −0.969241
\(892\) 0 0
\(893\) −1044.89 −1.17010
\(894\) 0 0
\(895\) 1899.45i 2.12229i
\(896\) 0 0
\(897\) −948.323 −1.05722
\(898\) 0 0
\(899\) −138.513 −0.154075
\(900\) 0 0
\(901\) 57.0952i 0.0633687i
\(902\) 0 0
\(903\) 327.743i 0.362949i
\(904\) 0 0
\(905\) 1602.09i 1.77026i
\(906\) 0 0
\(907\) 388.129 0.427926 0.213963 0.976842i \(-0.431363\pi\)
0.213963 + 0.976842i \(0.431363\pi\)
\(908\) 0 0
\(909\) −289.846 −0.318862
\(910\) 0 0
\(911\) 1325.20i 1.45466i 0.686286 + 0.727332i \(0.259240\pi\)
−0.686286 + 0.727332i \(0.740760\pi\)
\(912\) 0 0
\(913\) 799.150i 0.875302i
\(914\) 0 0
\(915\) 752.123i 0.821993i
\(916\) 0 0
\(917\) 473.917i 0.516813i
\(918\) 0 0
\(919\) 740.693i 0.805977i 0.915205 + 0.402988i \(0.132028\pi\)
−0.915205 + 0.402988i \(0.867972\pi\)
\(920\) 0 0
\(921\) 1157.57i 1.25686i
\(922\) 0 0
\(923\) 309.237 0.335035
\(924\) 0 0
\(925\) 1058.79i 1.14464i
\(926\) 0 0
\(927\) 47.3348 0.0510624
\(928\) 0 0
\(929\) 315.228i 0.339320i −0.985503 0.169660i \(-0.945733\pi\)
0.985503 0.169660i \(-0.0542670\pi\)
\(930\) 0 0
\(931\) −991.548 −1.06504
\(932\) 0 0
\(933\) 1261.62i 1.35222i
\(934\) 0 0
\(935\) 190.381i 0.203616i
\(936\) 0 0
\(937\) 1540.72i 1.64431i 0.569262 + 0.822156i \(0.307229\pi\)
−0.569262 + 0.822156i \(0.692771\pi\)
\(938\) 0 0
\(939\) 831.414i 0.885425i
\(940\) 0 0
\(941\) 1519.14i 1.61439i 0.590283 + 0.807196i \(0.299016\pi\)
−0.590283 + 0.807196i \(0.700984\pi\)
\(942\) 0 0
\(943\) 129.328i 0.137145i
\(944\) 0 0
\(945\) 443.292i 0.469092i
\(946\) 0 0
\(947\) 1279.36i 1.35096i −0.737379 0.675479i \(-0.763937\pi\)
0.737379 0.675479i \(-0.236063\pi\)
\(948\) 0 0
\(949\) 1554.33i 1.63786i
\(950\) 0 0
\(951\) 281.277i 0.295770i
\(952\) 0 0
\(953\) 65.0206 0.0682272 0.0341136 0.999418i \(-0.489139\pi\)
0.0341136 + 0.999418i \(0.489139\pi\)
\(954\) 0 0
\(955\) 239.194i 0.250465i
\(956\) 0 0
\(957\) 175.695i 0.183589i
\(958\) 0 0
\(959\) 50.4669 0.0526245
\(960\) 0 0
\(961\) −373.838 −0.389009
\(962\) 0 0
\(963\) −565.512 −0.587240
\(964\) 0 0
\(965\) 1420.49i 1.47201i
\(966\) 0 0
\(967\) −532.548 −0.550721 −0.275361 0.961341i \(-0.588797\pi\)
−0.275361 + 0.961341i \(0.588797\pi\)
\(968\) 0 0
\(969\) 88.5300 0.0913622
\(970\) 0 0
\(971\) 1421.97i 1.46444i −0.681067 0.732221i \(-0.738484\pi\)
0.681067 0.732221i \(-0.261516\pi\)
\(972\) 0 0
\(973\) 404.299i 0.415518i
\(974\) 0 0
\(975\) −526.993 −0.540506
\(976\) 0 0
\(977\) 1341.58i 1.37316i 0.727053 + 0.686581i \(0.240889\pi\)
−0.727053 + 0.686581i \(0.759111\pi\)
\(978\) 0 0
\(979\) 1345.38i 1.37424i
\(980\) 0 0
\(981\) 539.804i 0.550259i
\(982\) 0 0
\(983\) 265.739i 0.270335i −0.990823 0.135167i \(-0.956843\pi\)
0.990823 0.135167i \(-0.0431572\pi\)
\(984\) 0 0
\(985\) 1349.52i 1.37008i
\(986\) 0 0
\(987\) −265.170 −0.268663
\(988\) 0 0
\(989\) 1642.17i 1.66043i
\(990\) 0 0
\(991\) −737.282 −0.743978 −0.371989 0.928237i \(-0.621324\pi\)
−0.371989 + 0.928237i \(0.621324\pi\)
\(992\) 0 0
\(993\) 189.054i 0.190387i
\(994\) 0 0
\(995\) 1575.59 1.58351
\(996\) 0 0
\(997\) 890.548 0.893228 0.446614 0.894727i \(-0.352630\pi\)
0.446614 + 0.894727i \(0.352630\pi\)
\(998\) 0 0
\(999\) 1930.75i 1.93268i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2252.3.d.b.1125.19 76
563.562 odd 2 inner 2252.3.d.b.1125.20 yes 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2252.3.d.b.1125.19 76 1.1 even 1 trivial
2252.3.d.b.1125.20 yes 76 563.562 odd 2 inner