Properties

Label 2250.2.be
Level $2250$
Weight $2$
Character orbit 2250.be
Rep. character $\chi_{2250}(17,\cdot)$
Character field $\Q(\zeta_{100})$
Dimension $2000$
Sturm bound $900$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2250 = 2 \cdot 3^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2250.be (of order \(100\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 375 \)
Character field: \(\Q(\zeta_{100})\)
Sturm bound: \(900\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2250, [\chi])\).

Total New Old
Modular forms 18320 2000 16320
Cusp forms 17680 2000 15680
Eisenstein series 640 0 640

Trace form

\( 2000 q - 80 q^{19} - 80 q^{22} - 40 q^{28} - 20 q^{34} + 160 q^{67} + 160 q^{70} + 160 q^{73} + 160 q^{79} + 160 q^{82} + 140 q^{85} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2250, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2250, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2250, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(750, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1125, [\chi])\)\(^{\oplus 2}\)