Defining parameters
| Level: | \( N \) | \(=\) | \( 2250 = 2 \cdot 3^{2} \cdot 5^{3} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2250.be (of order \(100\) and degree \(40\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 375 \) |
| Character field: | \(\Q(\zeta_{100})\) | ||
| Sturm bound: | \(900\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2250, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 18320 | 2000 | 16320 |
| Cusp forms | 17680 | 2000 | 15680 |
| Eisenstein series | 640 | 0 | 640 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2250, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2250, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2250, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(750, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1125, [\chi])\)\(^{\oplus 2}\)