Properties

Label 224.4.x
Level $224$
Weight $4$
Character orbit 224.x
Rep. character $\chi_{224}(27,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $376$
Newform subspaces $2$
Sturm bound $128$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 224.x (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 224 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 2 \)
Sturm bound: \(128\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(224, [\chi])\).

Total New Old
Modular forms 392 392 0
Cusp forms 376 376 0
Eisenstein series 16 16 0

Trace form

\( 376 q - 8 q^{2} - 8 q^{4} - 4 q^{7} - 8 q^{8} - 8 q^{9} - 8 q^{11} + 204 q^{14} - 16 q^{15} - 308 q^{16} + 172 q^{18} - 4 q^{21} + 228 q^{22} - 336 q^{23} - 8 q^{25} + 376 q^{28} - 8 q^{29} - 1232 q^{30}+ \cdots + 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(224, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
224.4.x.a 224.x 224.x $8$ $13.216$ 8.0.157351936.1 \(\Q(\sqrt{-7}) \) 224.4.x.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{8}]$ \(q+(-\beta _{2}-3\beta _{4})q^{2}+(-7\beta _{3}+5\beta _{5}+\cdots)q^{4}+\cdots\)
224.4.x.b 224.x 224.x $368$ $13.216$ None 224.4.x.b \(-8\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{8}]$