Properties

Label 224.4.u
Level 224224
Weight 44
Character orbit 224.u
Rep. character χ224(29,)\chi_{224}(29,\cdot)
Character field Q(ζ8)\Q(\zeta_{8})
Dimension 288288
Newform subspaces 22
Sturm bound 128128
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 224=257 224 = 2^{5} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 224.u (of order 88 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 32 32
Character field: Q(ζ8)\Q(\zeta_{8})
Newform subspaces: 2 2
Sturm bound: 128128
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M4(224,[χ])M_{4}(224, [\chi]).

Total New Old
Modular forms 392 288 104
Cusp forms 376 288 88
Eisenstein series 16 0 16

Trace form

288q240q10+96q12+300q16+180q18628q22328q23912q2440q26+528q271160q301240q321000q342480q362408q381200q39++10624q99+O(q100) 288 q - 240 q^{10} + 96 q^{12} + 300 q^{16} + 180 q^{18} - 628 q^{22} - 328 q^{23} - 912 q^{24} - 40 q^{26} + 528 q^{27} - 1160 q^{30} - 1240 q^{32} - 1000 q^{34} - 2480 q^{36} - 2408 q^{38} - 1200 q^{39}+ \cdots + 10624 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(224,[χ])S_{4}^{\mathrm{new}}(224, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
224.4.u.a 224.u 32.g 140140 13.21613.216 None 224.4.u.a 00 00 00 00 SU(2)[C8]\mathrm{SU}(2)[C_{8}]
224.4.u.b 224.u 32.g 148148 13.21613.216 None 224.4.u.b 00 00 00 00 SU(2)[C8]\mathrm{SU}(2)[C_{8}]

Decomposition of S4old(224,[χ])S_{4}^{\mathrm{old}}(224, [\chi]) into lower level spaces

S4old(224,[χ]) S_{4}^{\mathrm{old}}(224, [\chi]) \simeq S4new(32,[χ])S_{4}^{\mathrm{new}}(32, [\chi])2^{\oplus 2}