Properties

Label 224.3
Level 224
Weight 3
Dimension 1606
Nonzero newspaces 12
Newform subspaces 26
Sturm bound 9216
Trace bound 13

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 26 \)
Sturm bound: \(9216\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(224))\).

Total New Old
Modular forms 3264 1706 1558
Cusp forms 2880 1606 1274
Eisenstein series 384 100 284

Trace form

\( 1606 q - 16 q^{2} - 14 q^{3} - 16 q^{4} - 24 q^{5} - 16 q^{6} - 14 q^{7} - 40 q^{8} + 10 q^{9} + 64 q^{10} + 18 q^{11} + 80 q^{12} + 40 q^{13} - 4 q^{14} - 20 q^{15} - 56 q^{16} - 88 q^{17} - 136 q^{18}+ \cdots - 1328 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(224))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
224.3.c \(\chi_{224}(97, \cdot)\) 224.3.c.a 8 1
224.3.c.b 8
224.3.d \(\chi_{224}(127, \cdot)\) 224.3.d.a 4 1
224.3.d.b 8
224.3.g \(\chi_{224}(15, \cdot)\) 224.3.g.a 4 1
224.3.g.b 8
224.3.h \(\chi_{224}(209, \cdot)\) 224.3.h.a 2 1
224.3.h.b 2
224.3.h.c 2
224.3.h.d 8
224.3.k \(\chi_{224}(71, \cdot)\) None 0 2
224.3.l \(\chi_{224}(41, \cdot)\) None 0 2
224.3.n \(\chi_{224}(17, \cdot)\) 224.3.n.a 28 2
224.3.o \(\chi_{224}(79, \cdot)\) 224.3.o.a 2 2
224.3.o.b 2
224.3.o.c 12
224.3.o.d 12
224.3.r \(\chi_{224}(95, \cdot)\) 224.3.r.a 4 2
224.3.r.b 4
224.3.r.c 12
224.3.r.d 12
224.3.s \(\chi_{224}(33, \cdot)\) 224.3.s.a 16 2
224.3.s.b 16
224.3.v \(\chi_{224}(13, \cdot)\) 224.3.v.a 8 4
224.3.v.b 240
224.3.w \(\chi_{224}(43, \cdot)\) 224.3.w.a 192 4
224.3.y \(\chi_{224}(23, \cdot)\) None 0 4
224.3.bb \(\chi_{224}(73, \cdot)\) None 0 4
224.3.bc \(\chi_{224}(5, \cdot)\) 224.3.bc.a 496 8
224.3.bf \(\chi_{224}(11, \cdot)\) 224.3.bf.a 496 8

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(224))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(224)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 2}\)