Properties

Label 223.2.c
Level $223$
Weight $2$
Character orbit 223.c
Rep. character $\chi_{223}(39,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $36$
Newform subspaces $1$
Sturm bound $37$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 223.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 223 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(37\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(223, [\chi])\).

Total New Old
Modular forms 40 40 0
Cusp forms 36 36 0
Eisenstein series 4 4 0

Trace form

\( 36 q - 4 q^{2} - q^{3} + 32 q^{4} + 3 q^{5} + 9 q^{6} - 2 q^{7} - 6 q^{8} - 11 q^{9} - 3 q^{10} - q^{11} - 11 q^{12} - 26 q^{13} + 6 q^{15} + 24 q^{16} + 8 q^{17} + 14 q^{18} - 4 q^{19} - 5 q^{20} - 3 q^{21}+ \cdots - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(223, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
223.2.c.a 223.c 223.c $36$ $1.781$ None 223.2.c.a \(-4\) \(-1\) \(3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$