Properties

Label 223.1.b.a.222.3
Level $223$
Weight $1$
Character 223.222
Self dual yes
Analytic conductor $0.111$
Analytic rank $0$
Dimension $3$
Projective image $D_{7}$
CM discriminant -223
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [223,1,Mod(222,223)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(223, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("223.222");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 223 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 223.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.111291497817\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{7}\)
Projective field: Galois closure of 7.1.11089567.1
Artin image: $D_7$
Artin field: Galois closure of 7.1.11089567.1

Embedding invariants

Embedding label 222.3
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 223.222

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.24698 q^{2} +0.554958 q^{4} -1.80194 q^{7} -0.554958 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.24698 q^{2} +0.554958 q^{4} -1.80194 q^{7} -0.554958 q^{8} +1.00000 q^{9} -2.24698 q^{14} -1.24698 q^{16} -0.445042 q^{17} +1.24698 q^{18} -0.445042 q^{19} +1.00000 q^{25} -1.00000 q^{28} +1.24698 q^{29} +1.24698 q^{31} -1.00000 q^{32} -0.554958 q^{34} +0.554958 q^{36} -1.80194 q^{37} -0.554958 q^{38} -1.80194 q^{41} +1.24698 q^{43} -0.445042 q^{47} +2.24698 q^{49} +1.24698 q^{50} -0.445042 q^{53} +1.00000 q^{56} +1.55496 q^{58} +1.55496 q^{62} -1.80194 q^{63} -0.246980 q^{68} -0.554958 q^{72} +1.24698 q^{73} -2.24698 q^{74} -0.246980 q^{76} +1.00000 q^{81} -2.24698 q^{82} +1.24698 q^{83} +1.55496 q^{86} -1.80194 q^{89} -0.554958 q^{94} +2.80194 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 2 q^{4} - q^{7} - 2 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{2} + 2 q^{4} - q^{7} - 2 q^{8} + 3 q^{9} - 2 q^{14} + q^{16} - q^{17} - q^{18} - q^{19} + 3 q^{25} - 3 q^{28} - q^{29} - q^{31} - 3 q^{32} - 2 q^{34} + 2 q^{36} - q^{37} - 2 q^{38} - q^{41} - q^{43} - q^{47} + 2 q^{49} - q^{50} - q^{53} + 3 q^{56} + 5 q^{58} + 5 q^{62} - q^{63} + 4 q^{68} - 2 q^{72} - q^{73} - 2 q^{74} + 4 q^{76} + 3 q^{81} - 2 q^{82} - q^{83} + 5 q^{86} - q^{89} - 2 q^{94} + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/223\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 0.554958 0.554958
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(8\) −0.554958 −0.554958
\(9\) 1.00000 1.00000
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −2.24698 −2.24698
\(15\) 0 0
\(16\) −1.24698 −1.24698
\(17\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(18\) 1.24698 1.24698
\(19\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) −1.00000 −1.00000
\(29\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(30\) 0 0
\(31\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(32\) −1.00000 −1.00000
\(33\) 0 0
\(34\) −0.554958 −0.554958
\(35\) 0 0
\(36\) 0.554958 0.554958
\(37\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(38\) −0.554958 −0.554958
\(39\) 0 0
\(40\) 0 0
\(41\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(42\) 0 0
\(43\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(48\) 0 0
\(49\) 2.24698 2.24698
\(50\) 1.24698 1.24698
\(51\) 0 0
\(52\) 0 0
\(53\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.00000 1.00000
\(57\) 0 0
\(58\) 1.55496 1.55496
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 1.55496 1.55496
\(63\) −1.80194 −1.80194
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −0.246980 −0.246980
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −0.554958 −0.554958
\(73\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(74\) −2.24698 −2.24698
\(75\) 0 0
\(76\) −0.246980 −0.246980
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 1.00000 1.00000
\(82\) −2.24698 −2.24698
\(83\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.55496 1.55496
\(87\) 0 0
\(88\) 0 0
\(89\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −0.554958 −0.554958
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 2.80194 2.80194
\(99\) 0 0
\(100\) 0.554958 0.554958
\(101\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.554958 −0.554958
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.24698 2.24698
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.692021 0.692021
\(117\) 0 0
\(118\) 0 0
\(119\) 0.801938 0.801938
\(120\) 0 0
\(121\) 1.00000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0.692021 0.692021
\(125\) 0 0
\(126\) −2.24698 −2.24698
\(127\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(128\) 1.00000 1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(132\) 0 0
\(133\) 0.801938 0.801938
\(134\) 0 0
\(135\) 0 0
\(136\) 0.246980 0.246980
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −1.24698 −1.24698
\(145\) 0 0
\(146\) 1.55496 1.55496
\(147\) 0 0
\(148\) −1.00000 −1.00000
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0.246980 0.246980
\(153\) −0.445042 −0.445042
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 1.24698 1.24698
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −1.00000 −1.00000
\(165\) 0 0
\(166\) 1.55496 1.55496
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) −0.445042 −0.445042
\(172\) 0.692021 0.692021
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −1.80194 −1.80194
\(176\) 0 0
\(177\) 0 0
\(178\) −2.24698 −2.24698
\(179\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(180\) 0 0
\(181\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −0.246980 −0.246980
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.24698 1.24698
\(197\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(198\) 0 0
\(199\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(200\) −0.554958 −0.554958
\(201\) 0 0
\(202\) −2.24698 −2.24698
\(203\) −2.24698 −2.24698
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(212\) −0.246980 −0.246980
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.24698 −2.24698
\(218\) −0.554958 −0.554958
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.00000 1.00000
\(224\) 1.80194 1.80194
\(225\) 1.00000 1.00000
\(226\) 0 0
\(227\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.692021 −0.692021
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 1.00000 1.00000
\(239\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(240\) 0 0
\(241\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(242\) 1.24698 1.24698
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −0.692021 −0.692021
\(249\) 0 0
\(250\) 0 0
\(251\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(252\) −1.00000 −1.00000
\(253\) 0 0
\(254\) −0.554958 −0.554958
\(255\) 0 0
\(256\) 1.24698 1.24698
\(257\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(258\) 0 0
\(259\) 3.24698 3.24698
\(260\) 0 0
\(261\) 1.24698 1.24698
\(262\) −2.24698 −2.24698
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.00000 1.00000
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0.554958 0.554958
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) −2.24698 −2.24698
\(279\) 1.24698 1.24698
\(280\) 0 0
\(281\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(282\) 0 0
\(283\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.24698 3.24698
\(288\) −1.00000 −1.00000
\(289\) −0.801938 −0.801938
\(290\) 0 0
\(291\) 0 0
\(292\) 0.692021 0.692021
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.00000 1.00000
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −2.24698 −2.24698
\(302\) 0 0
\(303\) 0 0
\(304\) 0.554958 0.554958
\(305\) 0 0
\(306\) −0.554958 −0.554958
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.198062 0.198062
\(324\) 0.554958 0.554958
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 1.00000 1.00000
\(329\) 0.801938 0.801938
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0.692021 0.692021
\(333\) −1.80194 −1.80194
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 1.24698 1.24698
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) −0.554958 −0.554958
\(343\) −2.24698 −2.24698
\(344\) −0.692021 −0.692021
\(345\) 0 0
\(346\) 0 0
\(347\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(348\) 0 0
\(349\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(350\) −2.24698 −2.24698
\(351\) 0 0
\(352\) 0 0
\(353\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.00000 −1.00000
\(357\) 0 0
\(358\) −2.24698 −2.24698
\(359\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(360\) 0 0
\(361\) −0.801938 −0.801938
\(362\) 1.55496 1.55496
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(368\) 0 0
\(369\) −1.80194 −1.80194
\(370\) 0 0
\(371\) 0.801938 0.801938
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.246980 0.246980
\(377\) 0 0
\(378\) 0 0
\(379\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.24698 1.24698
\(388\) 0 0
\(389\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.24698 −1.24698
\(393\) 0 0
\(394\) −2.24698 −2.24698
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 1.55496 1.55496
\(399\) 0 0
\(400\) −1.24698 −1.24698
\(401\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.00000 −1.00000
\(405\) 0 0
\(406\) −2.80194 −2.80194
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) −0.554958 −0.554958
\(423\) −0.445042 −0.445042
\(424\) 0.246980 0.246980
\(425\) −0.445042 −0.445042
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(434\) −2.80194 −2.80194
\(435\) 0 0
\(436\) −0.246980 −0.246980
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 2.24698 2.24698
\(442\) 0 0
\(443\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.24698 1.24698
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 1.24698 1.24698
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 2.49396 2.49396
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(462\) 0 0
\(463\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(464\) −1.55496 −1.55496
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.445042 −0.445042
\(476\) 0.445042 0.445042
\(477\) −0.445042 −0.445042
\(478\) 2.49396 2.49396
\(479\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.554958 −0.554958
\(483\) 0 0
\(484\) 0.554958 0.554958
\(485\) 0 0
\(486\) 0 0
\(487\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) −0.554958 −0.554958
\(494\) 0 0
\(495\) 0 0
\(496\) −1.55496 −1.55496
\(497\) 0 0
\(498\) 0 0
\(499\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1.55496 1.55496
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 1.00000 1.00000
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −0.246980 −0.246980
\(509\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(510\) 0 0
\(511\) −2.24698 −2.24698
\(512\) 0.554958 0.554958
\(513\) 0 0
\(514\) 1.55496 1.55496
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 4.04892 4.04892
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 1.55496 1.55496
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) −1.00000 −1.00000
\(525\) 0 0
\(526\) 0 0
\(527\) −0.554958 −0.554958
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0.445042 0.445042
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.445042 0.445042
\(545\) 0 0
\(546\) 0 0
\(547\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.554958 −0.554958
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.00000 −1.00000
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 1.55496 1.55496
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 1.55496 1.55496
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −2.24698 −2.24698
\(567\) −1.80194 −1.80194
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 4.04892 4.04892
\(575\) 0 0
\(576\) 0 0
\(577\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(578\) −1.00000 −1.00000
\(579\) 0 0
\(580\) 0 0
\(581\) −2.24698 −2.24698
\(582\) 0 0
\(583\) 0 0
\(584\) −0.692021 −0.692021
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) −0.554958 −0.554958
\(590\) 0 0
\(591\) 0 0
\(592\) 2.24698 2.24698
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −2.80194 −2.80194
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0.445042 0.445042
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.246980 −0.246980
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.24698 3.24698
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.801938 0.801938
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.55496 1.55496
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.246980 0.246980
\(647\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(648\) −0.554958 −0.554958
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 2.24698 2.24698
\(657\) 1.24698 1.24698
\(658\) 1.00000 1.00000
\(659\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −0.692021 −0.692021
\(665\) 0 0
\(666\) −2.24698 −2.24698
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0.554958 0.554958
\(677\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(684\) −0.246980 −0.246980
\(685\) 0 0
\(686\) −2.80194 −2.80194
\(687\) 0 0
\(688\) −1.55496 −1.55496
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.554958 −0.554958
\(695\) 0 0
\(696\) 0 0
\(697\) 0.801938 0.801938
\(698\) −0.554958 −0.554958
\(699\) 0 0
\(700\) −1.00000 −1.00000
\(701\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(702\) 0 0
\(703\) 0.801938 0.801938
\(704\) 0 0
\(705\) 0 0
\(706\) 1.55496 1.55496
\(707\) 3.24698 3.24698
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.00000 1.00000
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −1.00000 −1.00000
\(717\) 0 0
\(718\) −0.554958 −0.554958
\(719\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.00000 −1.00000
\(723\) 0 0
\(724\) 0.692021 0.692021
\(725\) 1.24698 1.24698
\(726\) 0 0
\(727\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) −0.554958 −0.554958
\(732\) 0 0
\(733\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(734\) 2.49396 2.49396
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −2.24698 −2.24698
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.00000 1.00000
\(743\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.24698 1.24698
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(752\) 0.554958 0.554958
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 1.55496 1.55496
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0.801938 0.801938
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 1.55496 1.55496
\(775\) 1.24698 1.24698
\(776\) 0 0
\(777\) 0 0
\(778\) −2.24698 −2.24698
\(779\) 0.801938 0.801938
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −2.80194 −2.80194
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) −1.00000 −1.00000
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0.692021 0.692021
\(797\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(798\) 0 0
\(799\) 0.198062 0.198062
\(800\) −1.00000 −1.00000
\(801\) −1.80194 −1.80194
\(802\) −0.554958 −0.554958
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 1.00000 1.00000
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −1.24698 −1.24698
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.554958 −0.554958
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.00000 −1.00000
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 2.49396 2.49396
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 0.554958 0.554958
\(842\) 0 0
\(843\) 0 0
\(844\) −0.246980 −0.246980
\(845\) 0 0
\(846\) −0.554958 −0.554958
\(847\) −1.80194 −1.80194
\(848\) 0.554958 0.554958
\(849\) 0 0
\(850\) −0.554958 −0.554958
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2.24698 −2.24698
\(867\) 0 0
\(868\) −1.24698 −1.24698
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.246980 0.246980
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(882\) 2.80194 2.80194
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −2.24698 −2.24698
\(887\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(888\) 0 0
\(889\) 0.801938 0.801938
\(890\) 0 0
\(891\) 0 0
\(892\) 0.554958 0.554958
\(893\) 0.198062 0.198062
\(894\) 0 0
\(895\) 0 0
\(896\) −1.80194 −1.80194
\(897\) 0 0
\(898\) 0 0
\(899\) 1.55496 1.55496
\(900\) 0.554958 0.554958
\(901\) 0.198062 0.198062
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(908\) 1.10992 1.10992
\(909\) −1.80194 −1.80194
\(910\) 0 0
\(911\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.24698 3.24698
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.55496 1.55496
\(923\) 0 0
\(924\) 0 0
\(925\) −1.80194 −1.80194
\(926\) 1.55496 1.55496
\(927\) 0 0
\(928\) −1.24698 −1.24698
\(929\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(930\) 0 0
\(931\) −1.00000 −1.00000
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −0.554958 −0.554958
\(951\) 0 0
\(952\) −0.445042 −0.445042
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) −0.554958 −0.554958
\(955\) 0 0
\(956\) 1.10992 1.10992
\(957\) 0 0
\(958\) 2.49396 2.49396
\(959\) 0 0
\(960\) 0 0
\(961\) 0.554958 0.554958
\(962\) 0 0
\(963\) 0 0
\(964\) −0.246980 −0.246980
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −0.554958 −0.554958
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 3.24698 3.24698
\(974\) −0.554958 −0.554958
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −0.445042 −0.445042
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −0.692021 −0.692021
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −1.24698 −1.24698
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(998\) −2.24698 −2.24698
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 223.1.b.a.222.3 3
3.2 odd 2 2007.1.d.b.1783.1 3
4.3 odd 2 3568.1.c.a.3121.3 3
223.222 odd 2 CM 223.1.b.a.222.3 3
669.668 even 2 2007.1.d.b.1783.1 3
892.891 even 2 3568.1.c.a.3121.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
223.1.b.a.222.3 3 1.1 even 1 trivial
223.1.b.a.222.3 3 223.222 odd 2 CM
2007.1.d.b.1783.1 3 3.2 odd 2
2007.1.d.b.1783.1 3 669.668 even 2
3568.1.c.a.3121.3 3 4.3 odd 2
3568.1.c.a.3121.3 3 892.891 even 2