Properties

Label 2205.2.by
Level $2205$
Weight $2$
Character orbit 2205.by
Rep. character $\chi_{2205}(128,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $928$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.by (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 315 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2205, [\chi])\).

Total New Old
Modular forms 1408 992 416
Cusp forms 1280 928 352
Eisenstein series 128 64 64

Trace form

\( 928 q + 6 q^{2} + 2 q^{3} + 24 q^{6} + 4 q^{10} + 22 q^{12} + 4 q^{13} - 10 q^{15} + 412 q^{16} + 18 q^{17} + 50 q^{18} + 12 q^{20} - 16 q^{22} + 4 q^{25} + 32 q^{27} + 60 q^{30} - 4 q^{31} + 150 q^{32}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2205, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2205, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2205, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 2}\)