Properties

Label 2200.2.fc
Level $2200$
Weight $2$
Character orbit 2200.fc
Rep. character $\chi_{2200}(57,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $432$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2200 = 2^{3} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2200.fc (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2200, [\chi])\).

Total New Old
Modular forms 3072 432 2640
Cusp forms 2688 432 2256
Eisenstein series 384 0 384

Trace form

\( 432 q + 8 q^{11} - 24 q^{23} + 12 q^{27} + 32 q^{31} - 16 q^{37} + 120 q^{41} + 28 q^{47} + 240 q^{51} - 12 q^{53} - 80 q^{57} - 112 q^{67} + 96 q^{71} + 60 q^{73} - 40 q^{77} + 172 q^{81} - 56 q^{91} + 96 q^{93}+ \cdots + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2200, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2200, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2200, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(440, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(550, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1100, [\chi])\)\(^{\oplus 2}\)