Properties

Label 2184.2.dr
Level $2184$
Weight $2$
Character orbit 2184.dr
Rep. character $\chi_{2184}(521,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $192$
Sturm bound $896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2184.dr (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2184, [\chi])\).

Total New Old
Modular forms 928 192 736
Cusp forms 864 192 672
Eisenstein series 64 0 64

Trace form

\( 192 q - 4 q^{7} - 4 q^{9} - 20 q^{21} - 76 q^{25} + 12 q^{31} + 84 q^{45} + 52 q^{49} + 6 q^{51} - 32 q^{57} - 72 q^{61} + 36 q^{63} - 108 q^{75} - 28 q^{79} - 12 q^{81} - 64 q^{85} - 108 q^{87} - 24 q^{93}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2184, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2184, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2184, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(546, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1092, [\chi])\)\(^{\oplus 2}\)