Defining parameters
| Level: | \( N \) | \(=\) | \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2184.dr (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Sturm bound: | \(896\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2184, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 928 | 192 | 736 |
| Cusp forms | 864 | 192 | 672 |
| Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2184, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2184, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2184, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(546, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1092, [\chi])\)\(^{\oplus 2}\)