Defining parameters
| Level: | \( N \) | \(=\) | \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2160.bu (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 180 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(432\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2160, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 120 | 4 | 116 |
| Cusp forms | 48 | 4 | 44 |
| Eisenstein series | 72 | 0 | 72 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 4 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2160, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 2160.1.bu.a | $4$ | $1.078$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-5}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+\zeta_{12}^{4}q^{5}+(\zeta_{12}+\zeta_{12}^{3})q^{7}+(\zeta_{12}^{3}+\cdots)q^{23}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(2160, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2160, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 2}\)