gp:[N,k,chi] = [21450,2,Mod(1,21450)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("21450.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(21450, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage:traces = [1,1,-1,1,0,-1,-2,1,1,0,1,-1,1,-2,0,1,-6,1,-3,0,2,1,2,-1,0,1,
-1,-2,1,0,2,1,-1,-6,0,1,-1,-3,-1,0,3,2,4,1,0,2,7,-1,-3,0,6,1,13,-1,0,-2,
3,1,0,0,-10,2,-2,1,0,-1,-5,-6,-2,0,-9,1,8,-1,0,-3,-2,-1,-11,0,1,3,10,2,
0,4,-1,1,-14,0,-2,2,-2,7,0,-1,12,-3,1,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
\( p \) |
Sign
|
\(2\) |
\( -1 \) |
\(3\) |
\( +1 \) |
\(5\) |
\( -1 \) |
\(11\) |
\( -1 \) |
\(13\) |
\( -1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.