Properties

Label 2142.2.do
Level $2142$
Weight $2$
Character orbit 2142.do
Rep. character $\chi_{2142}(73,\cdot)$
Character field $\Q(\zeta_{48})$
Dimension $960$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2142.do (of order \(48\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 119 \)
Character field: \(\Q(\zeta_{48})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2142, [\chi])\).

Total New Old
Modular forms 7168 960 6208
Cusp forms 6656 960 5696
Eisenstein series 512 0 512

Trace form

\( 960 q - 16 q^{11} + 16 q^{14} - 32 q^{22} - 16 q^{25} - 32 q^{35} + 32 q^{37} + 32 q^{44} - 32 q^{46} + 128 q^{49} - 64 q^{53} + 32 q^{58} - 48 q^{61} + 32 q^{65} + 64 q^{71} - 48 q^{73} - 64 q^{74} + 16 q^{77}+ \cdots - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2142, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2142, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2142, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(238, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(714, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1071, [\chi])\)\(^{\oplus 2}\)