Defining parameters
Level: | \( N \) | \(=\) | \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2142.do (of order \(48\) and degree \(16\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 119 \) |
Character field: | \(\Q(\zeta_{48})\) | ||
Sturm bound: | \(864\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2142, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7168 | 960 | 6208 |
Cusp forms | 6656 | 960 | 5696 |
Eisenstein series | 512 | 0 | 512 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2142, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2142, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2142, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(238, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(714, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1071, [\chi])\)\(^{\oplus 2}\)