Properties

Label 2142.2.db
Level $2142$
Weight $2$
Character orbit 2142.db
Rep. character $\chi_{2142}(43,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $864$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2142.db (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 153 \)
Character field: \(\Q(\zeta_{24})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2142, [\chi])\).

Total New Old
Modular forms 3520 864 2656
Cusp forms 3392 864 2528
Eisenstein series 128 0 128

Trace form

\( 864 q - 8 q^{9} + 8 q^{11} - 16 q^{12} - 16 q^{15} + 432 q^{16} + 8 q^{24} + 64 q^{35} - 8 q^{36} - 48 q^{39} - 24 q^{43} + 32 q^{44} + 64 q^{45} + 112 q^{50} + 16 q^{51} + 64 q^{53} + 56 q^{54} + 104 q^{57}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2142, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2142, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2142, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(306, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1071, [\chi])\)\(^{\oplus 2}\)