Properties

Label 2142.2.cv
Level $2142$
Weight $2$
Character orbit 2142.cv
Rep. character $\chi_{2142}(83,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $1152$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2142.cv (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1071 \)
Character field: \(\Q(\zeta_{24})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2142, [\chi])\).

Total New Old
Modular forms 3520 1152 2368
Cusp forms 3392 1152 2240
Eisenstein series 128 0 128

Trace form

\( 1152 q + 64 q^{15} + 576 q^{16} - 32 q^{18} + 144 q^{23} + 16 q^{39} + 24 q^{42} - 48 q^{51} - 80 q^{60} + 48 q^{63} - 48 q^{65} - 72 q^{77} + 64 q^{78} - 16 q^{84} + 144 q^{93} + 304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2142, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2142, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2142, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1071, [\chi])\)\(^{\oplus 2}\)