Properties

Label 2142.2.cd
Level $2142$
Weight $2$
Character orbit 2142.cd
Rep. character $\chi_{2142}(625,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $576$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2142.cd (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1071 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2142, [\chi])\).

Total New Old
Modular forms 1760 576 1184
Cusp forms 1696 576 1120
Eisenstein series 64 0 64

Trace form

\( 576 q - 576 q^{4} - 8 q^{11} + 576 q^{16} - 16 q^{18} - 16 q^{21} - 12 q^{23} + 24 q^{27} + 16 q^{29} + 32 q^{33} + 48 q^{35} + 48 q^{38} - 12 q^{39} + 24 q^{41} + 8 q^{44} - 24 q^{45} + 8 q^{51} + 12 q^{54}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2142, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2142, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2142, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1071, [\chi])\)\(^{\oplus 2}\)