Properties

Label 213.2.l
Level 213213
Weight 22
Character orbit 213.l
Rep. character χ213(23,)\chi_{213}(23,\cdot)
Character field Q(ζ14)\Q(\zeta_{14})
Dimension 132132
Newform subspaces 11
Sturm bound 4848
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 213=371 213 = 3 \cdot 71
Weight: k k == 2 2
Character orbit: [χ][\chi] == 213.l (of order 1414 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 213 213
Character field: Q(ζ14)\Q(\zeta_{14})
Newform subspaces: 1 1
Sturm bound: 4848
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(213,[χ])M_{2}(213, [\chi]).

Total New Old
Modular forms 156 156 0
Cusp forms 132 132 0
Eisenstein series 24 24 0

Trace form

132q10q3+10q415q614q714q9+2q10+20q1214q13+22q1530q16+8q1814q1928q2114q22+8q2484q257q2742q28++49q99+O(q100) 132 q - 10 q^{3} + 10 q^{4} - 15 q^{6} - 14 q^{7} - 14 q^{9} + 2 q^{10} + 20 q^{12} - 14 q^{13} + 22 q^{15} - 30 q^{16} + 8 q^{18} - 14 q^{19} - 28 q^{21} - 14 q^{22} + 8 q^{24} - 84 q^{25} - 7 q^{27} - 42 q^{28}+ \cdots + 49 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(213,[χ])S_{2}^{\mathrm{new}}(213, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
213.2.l.a 213.l 213.l 132132 1.7011.701 None 213.2.l.a 00 10-10 00 14-14 SU(2)[C14]\mathrm{SU}(2)[C_{14}]