Properties

Label 210.3.v.b.37.3
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.3
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.b.193.3

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(2.17130 + 4.50394i) q^{5} -2.44949 q^{6} +(1.63812 - 6.80563i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(1.36603 - 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(2.17130 + 4.50394i) q^{5} -2.44949 q^{6} +(1.63812 - 6.80563i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(4.61461 + 5.35774i) q^{10} +(9.66984 + 16.7487i) q^{11} +(-3.34607 + 0.896575i) q^{12} +(10.3969 - 10.3969i) q^{13} +(-0.253320 - 9.89625i) q^{14} +(-1.61360 - 8.50860i) q^{15} +(2.00000 - 3.46410i) q^{16} +(6.19178 - 23.1080i) q^{17} +(4.09808 + 1.09808i) q^{18} +(2.70091 + 1.55937i) q^{19} +(8.26474 + 5.62975i) q^{20} +(-5.79151 + 10.6517i) q^{21} +(19.3397 + 19.3397i) q^{22} +(9.18722 + 34.2872i) q^{23} +(-4.24264 + 2.44949i) q^{24} +(-15.5709 + 19.5588i) q^{25} +(10.3969 - 18.0080i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-3.96832 - 13.4258i) q^{28} -36.5420i q^{29} +(-5.31858 - 11.0323i) q^{30} +(-1.49997 - 2.59803i) q^{31} +(1.46410 - 5.46410i) q^{32} +(-8.66974 - 32.3559i) q^{33} -33.8325i q^{34} +(34.2090 - 7.39909i) q^{35} +6.00000 q^{36} +(0.422582 - 0.113231i) q^{37} +(4.26029 + 1.14154i) q^{38} +(-22.0552 + 12.7336i) q^{39} +(13.3505 + 4.66527i) q^{40} -64.3827 q^{41} +(-4.01256 + 16.6703i) q^{42} +(-38.9059 + 38.9059i) q^{43} +(33.4973 + 19.3397i) q^{44} +(-1.11470 + 14.9585i) q^{45} +(25.1000 + 43.4744i) q^{46} +(10.7803 - 2.88858i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(-43.6331 - 22.2969i) q^{49} +(-14.1112 + 32.4172i) q^{50} +(-20.7181 + 35.8848i) q^{51} +(7.61109 - 28.4050i) q^{52} +(29.6867 + 7.95451i) q^{53} +(-6.36396 - 3.67423i) q^{54} +(-54.4388 + 79.9188i) q^{55} +(-10.3350 - 16.8875i) q^{56} +(-3.81967 - 3.81967i) q^{57} +(-13.3753 - 49.9173i) q^{58} +(-34.4561 + 19.8933i) q^{59} +(-11.3034 - 13.1237i) q^{60} +(-21.4176 + 37.0964i) q^{61} +(-2.99995 - 2.99995i) q^{62} +(14.4644 - 15.2244i) q^{63} -8.00000i q^{64} +(69.4021 + 24.2523i) q^{65} +(-23.6862 - 41.0257i) q^{66} +(-1.06830 + 3.98696i) q^{67} +(-12.3836 - 46.2161i) q^{68} -61.4821i q^{69} +(44.0221 - 22.6287i) q^{70} -81.1650 q^{71} +(8.19615 - 2.19615i) q^{72} +(-101.361 - 27.1596i) q^{73} +(0.535813 - 0.309352i) q^{74} +(34.8186 - 25.7423i) q^{75} +6.23750 q^{76} +(129.825 - 38.3730i) q^{77} +(-25.4672 + 25.4672i) q^{78} +(-25.8510 - 14.9251i) q^{79} +(19.9447 + 1.48626i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-87.9485 + 23.5657i) q^{82} +(6.76277 - 6.76277i) q^{83} +(0.620506 + 24.2408i) q^{84} +(117.521 - 22.2871i) q^{85} +(-38.9059 + 67.3869i) q^{86} +(-16.3813 + 61.1360i) q^{87} +(52.8370 + 14.1576i) q^{88} +(101.345 + 58.5117i) q^{89} +(3.95249 + 20.8417i) q^{90} +(-53.7263 - 87.7891i) q^{91} +(50.1999 + 50.1999i) q^{92} +(1.34484 + 5.01901i) q^{93} +(13.6689 - 7.89175i) q^{94} +(-1.15882 + 15.5506i) q^{95} +(-4.89898 + 8.48528i) q^{96} +(-63.8427 - 63.8427i) q^{97} +(-67.7652 - 14.4872i) q^{98} +58.0191i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 2.17130 + 4.50394i 0.434260 + 0.900787i
\(6\) −2.44949 −0.408248
\(7\) 1.63812 6.80563i 0.234017 0.972233i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 4.61461 + 5.35774i 0.461461 + 0.535774i
\(11\) 9.66984 + 16.7487i 0.879077 + 1.52261i 0.852356 + 0.522962i \(0.175173\pi\)
0.0267208 + 0.999643i \(0.491493\pi\)
\(12\) −3.34607 + 0.896575i −0.278839 + 0.0747146i
\(13\) 10.3969 10.3969i 0.799765 0.799765i −0.183293 0.983058i \(-0.558676\pi\)
0.983058 + 0.183293i \(0.0586759\pi\)
\(14\) −0.253320 9.89625i −0.0180943 0.706875i
\(15\) −1.61360 8.50860i −0.107573 0.567240i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 6.19178 23.1080i 0.364222 1.35930i −0.504250 0.863558i \(-0.668231\pi\)
0.868472 0.495738i \(-0.165102\pi\)
\(18\) 4.09808 + 1.09808i 0.227671 + 0.0610042i
\(19\) 2.70091 + 1.55937i 0.142153 + 0.0820723i 0.569390 0.822068i \(-0.307179\pi\)
−0.427236 + 0.904140i \(0.640513\pi\)
\(20\) 8.26474 + 5.62975i 0.413237 + 0.281487i
\(21\) −5.79151 + 10.6517i −0.275786 + 0.507223i
\(22\) 19.3397 + 19.3397i 0.879077 + 0.879077i
\(23\) 9.18722 + 34.2872i 0.399444 + 1.49075i 0.814076 + 0.580758i \(0.197244\pi\)
−0.414632 + 0.909989i \(0.636090\pi\)
\(24\) −4.24264 + 2.44949i −0.176777 + 0.102062i
\(25\) −15.5709 + 19.5588i −0.622836 + 0.782352i
\(26\) 10.3969 18.0080i 0.399882 0.692617i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −3.96832 13.4258i −0.141726 0.479493i
\(29\) 36.5420i 1.26007i −0.776567 0.630034i \(-0.783041\pi\)
0.776567 0.630034i \(-0.216959\pi\)
\(30\) −5.31858 11.0323i −0.177286 0.367745i
\(31\) −1.49997 2.59803i −0.0483862 0.0838074i 0.840818 0.541318i \(-0.182075\pi\)
−0.889204 + 0.457511i \(0.848741\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) −8.66974 32.3559i −0.262720 0.980483i
\(34\) 33.8325i 0.995074i
\(35\) 34.2090 7.39909i 0.977399 0.211402i
\(36\) 6.00000 0.166667
\(37\) 0.422582 0.113231i 0.0114211 0.00306029i −0.253104 0.967439i \(-0.581451\pi\)
0.264525 + 0.964379i \(0.414785\pi\)
\(38\) 4.26029 + 1.14154i 0.112113 + 0.0300406i
\(39\) −22.0552 + 12.7336i −0.565519 + 0.326503i
\(40\) 13.3505 + 4.66527i 0.333762 + 0.116632i
\(41\) −64.3827 −1.57031 −0.785155 0.619299i \(-0.787417\pi\)
−0.785155 + 0.619299i \(0.787417\pi\)
\(42\) −4.01256 + 16.6703i −0.0955370 + 0.396912i
\(43\) −38.9059 + 38.9059i −0.904787 + 0.904787i −0.995846 0.0910583i \(-0.970975\pi\)
0.0910583 + 0.995846i \(0.470975\pi\)
\(44\) 33.4973 + 19.3397i 0.761303 + 0.439538i
\(45\) −1.11470 + 14.9585i −0.0247711 + 0.332412i
\(46\) 25.1000 + 43.4744i 0.545651 + 0.945096i
\(47\) 10.7803 2.88858i 0.229369 0.0614592i −0.142304 0.989823i \(-0.545451\pi\)
0.371673 + 0.928364i \(0.378784\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) −43.6331 22.2969i −0.890472 0.455038i
\(50\) −14.1112 + 32.4172i −0.282224 + 0.648344i
\(51\) −20.7181 + 35.8848i −0.406237 + 0.703623i
\(52\) 7.61109 28.4050i 0.146367 0.546249i
\(53\) 29.6867 + 7.95451i 0.560125 + 0.150085i 0.527764 0.849391i \(-0.323031\pi\)
0.0323615 + 0.999476i \(0.489697\pi\)
\(54\) −6.36396 3.67423i −0.117851 0.0680414i
\(55\) −54.4388 + 79.9188i −0.989796 + 1.45307i
\(56\) −10.3350 16.8875i −0.184554 0.301562i
\(57\) −3.81967 3.81967i −0.0670118 0.0670118i
\(58\) −13.3753 49.9173i −0.230609 0.860643i
\(59\) −34.4561 + 19.8933i −0.584002 + 0.337174i −0.762722 0.646726i \(-0.776138\pi\)
0.178720 + 0.983900i \(0.442804\pi\)
\(60\) −11.3034 13.1237i −0.188391 0.218729i
\(61\) −21.4176 + 37.0964i −0.351109 + 0.608138i −0.986444 0.164098i \(-0.947529\pi\)
0.635335 + 0.772236i \(0.280862\pi\)
\(62\) −2.99995 2.99995i −0.0483862 0.0483862i
\(63\) 14.4644 15.2244i 0.229594 0.241657i
\(64\) 8.00000i 0.125000i
\(65\) 69.4021 + 24.2523i 1.06772 + 0.373112i
\(66\) −23.6862 41.0257i −0.358882 0.621601i
\(67\) −1.06830 + 3.98696i −0.0159448 + 0.0595068i −0.973440 0.228943i \(-0.926473\pi\)
0.957495 + 0.288450i \(0.0931398\pi\)
\(68\) −12.3836 46.2161i −0.182111 0.679648i
\(69\) 61.4821i 0.891045i
\(70\) 44.0221 22.6287i 0.628887 0.323267i
\(71\) −81.1650 −1.14317 −0.571585 0.820543i \(-0.693671\pi\)
−0.571585 + 0.820543i \(0.693671\pi\)
\(72\) 8.19615 2.19615i 0.113835 0.0305021i
\(73\) −101.361 27.1596i −1.38851 0.372049i −0.514303 0.857609i \(-0.671949\pi\)
−0.874203 + 0.485560i \(0.838616\pi\)
\(74\) 0.535813 0.309352i 0.00724071 0.00418043i
\(75\) 34.8186 25.7423i 0.464248 0.343231i
\(76\) 6.23750 0.0820723
\(77\) 129.825 38.3730i 1.68605 0.498351i
\(78\) −25.4672 + 25.4672i −0.326503 + 0.326503i
\(79\) −25.8510 14.9251i −0.327227 0.188925i 0.327382 0.944892i \(-0.393834\pi\)
−0.654609 + 0.755967i \(0.727167\pi\)
\(80\) 19.9447 + 1.48626i 0.249309 + 0.0185783i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −87.9485 + 23.5657i −1.07254 + 0.287387i
\(83\) 6.76277 6.76277i 0.0814791 0.0814791i −0.665193 0.746672i \(-0.731651\pi\)
0.746672 + 0.665193i \(0.231651\pi\)
\(84\) 0.620506 + 24.2408i 0.00738697 + 0.288581i
\(85\) 117.521 22.2871i 1.38260 0.262201i
\(86\) −38.9059 + 67.3869i −0.452394 + 0.783569i
\(87\) −16.3813 + 61.1360i −0.188291 + 0.702712i
\(88\) 52.8370 + 14.1576i 0.600420 + 0.160882i
\(89\) 101.345 + 58.5117i 1.13871 + 0.657435i 0.946111 0.323842i \(-0.104975\pi\)
0.192600 + 0.981277i \(0.438308\pi\)
\(90\) 3.95249 + 20.8417i 0.0439166 + 0.231575i
\(91\) −53.7263 87.7891i −0.590399 0.964716i
\(92\) 50.1999 + 50.1999i 0.545651 + 0.545651i
\(93\) 1.34484 + 5.01901i 0.0144606 + 0.0539678i
\(94\) 13.6689 7.89175i 0.145414 0.0839548i
\(95\) −1.15882 + 15.5506i −0.0121981 + 0.163691i
\(96\) −4.89898 + 8.48528i −0.0510310 + 0.0883883i
\(97\) −63.8427 63.8427i −0.658172 0.658172i 0.296775 0.954947i \(-0.404089\pi\)
−0.954947 + 0.296775i \(0.904089\pi\)
\(98\) −67.7652 14.4872i −0.691481 0.147829i
\(99\) 58.0191i 0.586051i
\(100\) −7.41077 + 49.4478i −0.0741077 + 0.494478i
\(101\) 33.9899 + 58.8723i 0.336534 + 0.582894i 0.983778 0.179389i \(-0.0574119\pi\)
−0.647244 + 0.762283i \(0.724079\pi\)
\(102\) −15.1667 + 56.6029i −0.148693 + 0.554930i
\(103\) −33.2868 124.228i −0.323173 1.20610i −0.916136 0.400868i \(-0.868708\pi\)
0.592963 0.805230i \(-0.297958\pi\)
\(104\) 41.5878i 0.399882i
\(105\) −60.5496 2.95655i −0.576663 0.0281576i
\(106\) 43.4643 0.410040
\(107\) 50.0631 13.4144i 0.467880 0.125368i −0.0171737 0.999853i \(-0.505467\pi\)
0.485053 + 0.874485i \(0.338800\pi\)
\(108\) −10.0382 2.68973i −0.0929463 0.0249049i
\(109\) 125.372 72.3837i 1.15020 0.664071i 0.201268 0.979536i \(-0.435494\pi\)
0.948937 + 0.315465i \(0.102161\pi\)
\(110\) −45.1124 + 129.097i −0.410113 + 1.17361i
\(111\) −0.757754 −0.00682661
\(112\) −20.2991 19.2859i −0.181242 0.172195i
\(113\) 131.253 131.253i 1.16153 1.16153i 0.177388 0.984141i \(-0.443235\pi\)
0.984141 0.177388i \(-0.0567647\pi\)
\(114\) −6.61586 3.81967i −0.0580339 0.0335059i
\(115\) −134.479 + 115.826i −1.16938 + 1.00719i
\(116\) −36.5420 63.2926i −0.315017 0.545626i
\(117\) 42.6075 11.4166i 0.364166 0.0975781i
\(118\) −39.7865 + 39.7865i −0.337174 + 0.337174i
\(119\) −147.122 79.9926i −1.23632 0.672207i
\(120\) −20.2444 13.7900i −0.168703 0.114917i
\(121\) −126.512 + 219.125i −1.04555 + 1.81095i
\(122\) −15.6788 + 58.5140i −0.128515 + 0.479623i
\(123\) 107.714 + 28.8620i 0.875727 + 0.234650i
\(124\) −5.19606 2.99995i −0.0419037 0.0241931i
\(125\) −121.901 27.6623i −0.975206 0.221298i
\(126\) 14.1862 26.0912i 0.112589 0.207073i
\(127\) 9.10167 + 9.10167i 0.0716667 + 0.0716667i 0.742032 0.670365i \(-0.233862\pi\)
−0.670365 + 0.742032i \(0.733862\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) 82.5318 47.6497i 0.639781 0.369378i
\(130\) 103.682 + 7.72630i 0.797553 + 0.0594331i
\(131\) 107.486 186.170i 0.820500 1.42115i −0.0848102 0.996397i \(-0.527028\pi\)
0.905310 0.424751i \(-0.139638\pi\)
\(132\) −47.3724 47.3724i −0.358882 0.358882i
\(133\) 15.0369 15.8270i 0.113060 0.119000i
\(134\) 5.83731i 0.0435620i
\(135\) 8.57065 24.5264i 0.0634863 0.181677i
\(136\) −33.8325 58.5996i −0.248768 0.430880i
\(137\) −33.5756 + 125.306i −0.245077 + 0.914640i 0.728267 + 0.685293i \(0.240326\pi\)
−0.973345 + 0.229347i \(0.926341\pi\)
\(138\) −22.5040 83.9861i −0.163073 0.608595i
\(139\) 68.0948i 0.489890i 0.969537 + 0.244945i \(0.0787700\pi\)
−0.969537 + 0.244945i \(0.921230\pi\)
\(140\) 51.8526 47.0246i 0.370376 0.335890i
\(141\) −19.3308 −0.137098
\(142\) −110.873 + 29.7085i −0.780799 + 0.209214i
\(143\) 274.672 + 73.5980i 1.92078 + 0.514672i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) 164.583 79.3437i 1.13505 0.547198i
\(146\) −148.403 −1.01646
\(147\) 63.0042 + 56.8636i 0.428600 + 0.386827i
\(148\) 0.618703 0.618703i 0.00418043 0.00418043i
\(149\) −208.836 120.572i −1.40159 0.809206i −0.407031 0.913414i \(-0.633436\pi\)
−0.994556 + 0.104208i \(0.966769\pi\)
\(150\) 38.1408 47.9091i 0.254272 0.319394i
\(151\) 51.4548 + 89.1223i 0.340760 + 0.590214i 0.984574 0.174968i \(-0.0559823\pi\)
−0.643814 + 0.765182i \(0.722649\pi\)
\(152\) 8.52058 2.28308i 0.0560564 0.0150203i
\(153\) 50.7488 50.7488i 0.331691 0.331691i
\(154\) 163.299 99.9380i 1.06039 0.648948i
\(155\) 8.44447 12.3969i 0.0544804 0.0799800i
\(156\) −25.4672 + 44.1105i −0.163251 + 0.282760i
\(157\) 18.9599 70.7594i 0.120764 0.450697i −0.878889 0.477026i \(-0.841715\pi\)
0.999653 + 0.0263285i \(0.00838158\pi\)
\(158\) −40.7760 10.9259i −0.258076 0.0691512i
\(159\) −46.1008 26.6163i −0.289942 0.167398i
\(160\) 27.7890 5.26999i 0.173681 0.0329374i
\(161\) 248.396 6.35833i 1.54283 0.0394927i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) −17.3760 64.8481i −0.106601 0.397841i 0.891921 0.452192i \(-0.149358\pi\)
−0.998522 + 0.0543506i \(0.982691\pi\)
\(164\) −111.514 + 64.3827i −0.679965 + 0.392578i
\(165\) 126.904 109.302i 0.769118 0.662439i
\(166\) 6.76277 11.7135i 0.0407396 0.0705630i
\(167\) 92.5655 + 92.5655i 0.554284 + 0.554284i 0.927674 0.373390i \(-0.121805\pi\)
−0.373390 + 0.927674i \(0.621805\pi\)
\(168\) 9.72036 + 32.8864i 0.0578593 + 0.195752i
\(169\) 47.1928i 0.279247i
\(170\) 152.379 73.4606i 0.896350 0.432121i
\(171\) 4.67812 + 8.10274i 0.0273574 + 0.0473845i
\(172\) −28.4811 + 106.293i −0.165588 + 0.617981i
\(173\) 45.5179 + 169.875i 0.263109 + 0.981936i 0.963398 + 0.268077i \(0.0863880\pi\)
−0.700289 + 0.713860i \(0.746945\pi\)
\(174\) 89.5092i 0.514421i
\(175\) 107.603 + 138.009i 0.614874 + 0.788625i
\(176\) 77.3587 0.439538
\(177\) 66.5642 17.8358i 0.376069 0.100767i
\(178\) 159.857 + 42.8336i 0.898073 + 0.240638i
\(179\) −220.202 + 127.134i −1.23018 + 0.710243i −0.967067 0.254522i \(-0.918082\pi\)
−0.263111 + 0.964766i \(0.584748\pi\)
\(180\) 13.0278 + 27.0236i 0.0723767 + 0.150131i
\(181\) −114.712 −0.633771 −0.316885 0.948464i \(-0.602637\pi\)
−0.316885 + 0.948464i \(0.602637\pi\)
\(182\) −105.525 100.257i −0.579805 0.550863i
\(183\) 52.4623 52.4623i 0.286679 0.286679i
\(184\) 86.9488 + 50.1999i 0.472548 + 0.272826i
\(185\) 1.42754 + 1.65743i 0.00771641 + 0.00895906i
\(186\) 3.67417 + 6.36385i 0.0197536 + 0.0342142i
\(187\) 446.902 119.747i 2.38985 0.640359i
\(188\) 15.7835 15.7835i 0.0839548 0.0839548i
\(189\) −31.0243 + 18.9866i −0.164150 + 0.100458i
\(190\) 4.10894 + 21.6667i 0.0216260 + 0.114035i
\(191\) −159.306 + 275.926i −0.834063 + 1.44464i 0.0607278 + 0.998154i \(0.480658\pi\)
−0.894791 + 0.446485i \(0.852675\pi\)
\(192\) −3.58630 + 13.3843i −0.0186787 + 0.0697097i
\(193\) 98.2599 + 26.3287i 0.509119 + 0.136418i 0.504229 0.863570i \(-0.331777\pi\)
0.00489001 + 0.999988i \(0.498443\pi\)
\(194\) −110.579 63.8427i −0.569994 0.329086i
\(195\) −105.240 71.6869i −0.539692 0.367625i
\(196\) −97.8717 + 5.01384i −0.499345 + 0.0255808i
\(197\) −217.833 217.833i −1.10575 1.10575i −0.993703 0.112047i \(-0.964259\pi\)
−0.112047 0.993703i \(-0.535741\pi\)
\(198\) 21.2364 + 79.2555i 0.107255 + 0.400280i
\(199\) 19.8344 11.4514i 0.0996704 0.0575447i −0.449336 0.893363i \(-0.648339\pi\)
0.549007 + 0.835818i \(0.315006\pi\)
\(200\) 7.97583 + 70.2594i 0.0398791 + 0.351297i
\(201\) 3.57461 6.19140i 0.0177841 0.0308030i
\(202\) 67.9799 + 67.9799i 0.336534 + 0.336534i
\(203\) −248.691 59.8601i −1.22508 0.294878i
\(204\) 82.8724i 0.406237i
\(205\) −139.794 289.976i −0.681924 1.41452i
\(206\) −90.9413 157.515i −0.441463 0.764636i
\(207\) −27.5617 + 102.862i −0.133148 + 0.496916i
\(208\) −15.2222 56.8099i −0.0731836 0.273125i
\(209\) 60.3156i 0.288591i
\(210\) −83.7945 + 18.1240i −0.399022 + 0.0863047i
\(211\) 184.175 0.872868 0.436434 0.899736i \(-0.356241\pi\)
0.436434 + 0.899736i \(0.356241\pi\)
\(212\) 59.3733 15.9090i 0.280063 0.0750426i
\(213\) 135.792 + 36.3853i 0.637520 + 0.170823i
\(214\) 63.4775 36.6487i 0.296624 0.171256i
\(215\) −259.706 90.7532i −1.20793 0.422108i
\(216\) −14.6969 −0.0680414
\(217\) −20.1384 + 5.95238i −0.0928035 + 0.0274303i
\(218\) 144.767 144.767i 0.664071 0.664071i
\(219\) 157.405 + 90.8777i 0.718744 + 0.414967i
\(220\) −14.3719 + 192.862i −0.0653270 + 0.876646i
\(221\) −175.877 304.628i −0.795825 1.37841i
\(222\) −1.03511 + 0.277357i −0.00466266 + 0.00124936i
\(223\) −150.693 + 150.693i −0.675752 + 0.675752i −0.959036 0.283284i \(-0.908576\pi\)
0.283284 + 0.959036i \(0.408576\pi\)
\(224\) −34.7883 18.9150i −0.155305 0.0844419i
\(225\) −69.7926 + 27.4589i −0.310189 + 0.122040i
\(226\) 131.253 227.336i 0.580764 1.00591i
\(227\) 24.8120 92.5998i 0.109304 0.407928i −0.889494 0.456947i \(-0.848943\pi\)
0.998798 + 0.0490189i \(0.0156095\pi\)
\(228\) −10.4355 2.79619i −0.0457699 0.0122640i
\(229\) −6.22985 3.59681i −0.0272046 0.0157066i 0.486336 0.873772i \(-0.338333\pi\)
−0.513541 + 0.858065i \(0.671666\pi\)
\(230\) −141.306 + 207.445i −0.614376 + 0.901933i
\(231\) −234.404 + 6.00019i −1.01474 + 0.0259749i
\(232\) −73.0840 73.0840i −0.315017 0.315017i
\(233\) 27.2353 + 101.644i 0.116890 + 0.436239i 0.999421 0.0340145i \(-0.0108292\pi\)
−0.882532 + 0.470253i \(0.844163\pi\)
\(234\) 54.0241 31.1908i 0.230872 0.133294i
\(235\) 36.4173 + 42.2820i 0.154967 + 0.179923i
\(236\) −39.7865 + 68.9123i −0.168587 + 0.292001i
\(237\) 36.5588 + 36.5588i 0.154256 + 0.154256i
\(238\) −230.251 55.4217i −0.967443 0.232864i
\(239\) 101.044i 0.422779i 0.977402 + 0.211389i \(0.0677988\pi\)
−0.977402 + 0.211389i \(0.932201\pi\)
\(240\) −32.7019 11.4275i −0.136258 0.0476147i
\(241\) 85.2132 + 147.594i 0.353582 + 0.612422i 0.986874 0.161491i \(-0.0516302\pi\)
−0.633292 + 0.773913i \(0.718297\pi\)
\(242\) −92.6130 + 345.636i −0.382698 + 1.42825i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 85.6705i 0.351109i
\(245\) 5.68294 244.934i 0.0231957 0.999731i
\(246\) 157.705 0.641077
\(247\) 44.2940 11.8685i 0.179328 0.0480508i
\(248\) −8.19601 2.19611i −0.0330484 0.00885530i
\(249\) −14.3460 + 8.28267i −0.0576145 + 0.0332637i
\(250\) −176.645 + 6.83143i −0.706579 + 0.0273257i
\(251\) −135.214 −0.538703 −0.269351 0.963042i \(-0.586809\pi\)
−0.269351 + 0.963042i \(0.586809\pi\)
\(252\) 9.82871 40.8338i 0.0390028 0.162039i
\(253\) −485.425 + 485.425i −1.91868 + 1.91868i
\(254\) 15.7646 + 9.10167i 0.0620652 + 0.0358334i
\(255\) −206.608 15.3963i −0.810228 0.0603776i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −206.149 + 55.2375i −0.802137 + 0.214932i −0.636522 0.771259i \(-0.719628\pi\)
−0.165615 + 0.986191i \(0.552961\pi\)
\(258\) 95.2995 95.2995i 0.369378 0.369378i
\(259\) −0.0783651 3.06142i −0.000302568 0.0118202i
\(260\) 144.460 27.3959i 0.555616 0.105369i
\(261\) 54.8130 94.9389i 0.210011 0.363751i
\(262\) 78.6849 293.656i 0.300324 1.12082i
\(263\) −225.061 60.3049i −0.855745 0.229296i −0.195831 0.980638i \(-0.562740\pi\)
−0.659914 + 0.751342i \(0.729407\pi\)
\(264\) −82.0513 47.3724i −0.310801 0.179441i
\(265\) 28.6320 + 150.978i 0.108045 + 0.569730i
\(266\) 14.7478 27.1240i 0.0554427 0.101970i
\(267\) −143.324 143.324i −0.536793 0.536793i
\(268\) 2.13660 + 7.97391i 0.00797240 + 0.0297534i
\(269\) −146.659 + 84.6734i −0.545199 + 0.314771i −0.747184 0.664618i \(-0.768594\pi\)
0.201984 + 0.979389i \(0.435261\pi\)
\(270\) 2.73044 36.6408i 0.0101127 0.135706i
\(271\) 48.7012 84.3530i 0.179709 0.311266i −0.762072 0.647493i \(-0.775818\pi\)
0.941781 + 0.336227i \(0.109151\pi\)
\(272\) −67.6650 67.6650i −0.248768 0.248768i
\(273\) 50.5310 + 170.959i 0.185095 + 0.626223i
\(274\) 183.460i 0.669563i
\(275\) −478.152 71.6610i −1.73873 0.260586i
\(276\) −61.4821 106.490i −0.222761 0.385834i
\(277\) 20.0063 74.6644i 0.0722248 0.269547i −0.920365 0.391061i \(-0.872108\pi\)
0.992590 + 0.121514i \(0.0387749\pi\)
\(278\) 24.9244 + 93.0192i 0.0896562 + 0.334601i
\(279\) 8.99984i 0.0322575i
\(280\) 53.6198 83.2161i 0.191499 0.297200i
\(281\) 426.425 1.51753 0.758763 0.651367i \(-0.225804\pi\)
0.758763 + 0.651367i \(0.225804\pi\)
\(282\) −26.4063 + 7.07555i −0.0936394 + 0.0250906i
\(283\) 68.4841 + 18.3503i 0.241993 + 0.0648419i 0.377777 0.925897i \(-0.376689\pi\)
−0.135784 + 0.990739i \(0.543355\pi\)
\(284\) −140.582 + 81.1650i −0.495007 + 0.285792i
\(285\) 8.90990 25.4972i 0.0312628 0.0894639i
\(286\) 402.147 1.40611
\(287\) −105.467 + 438.165i −0.367479 + 1.52671i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) −245.362 141.660i −0.849002 0.490172i
\(290\) 195.783 168.627i 0.675112 0.581472i
\(291\) 78.1910 + 135.431i 0.268698 + 0.465398i
\(292\) −202.722 + 54.3192i −0.694253 + 0.186025i
\(293\) −27.6890 + 27.6890i −0.0945016 + 0.0945016i −0.752777 0.658275i \(-0.771286\pi\)
0.658275 + 0.752777i \(0.271286\pi\)
\(294\) 106.879 + 54.6159i 0.363534 + 0.185768i
\(295\) −164.413 111.994i −0.557331 0.379641i
\(296\) 0.618703 1.07163i 0.00209021 0.00362036i
\(297\) 26.0092 97.0678i 0.0875732 0.326828i
\(298\) −329.408 88.2646i −1.10540 0.296190i
\(299\) 452.001 + 260.963i 1.51171 + 0.872785i
\(300\) 34.5653 79.4055i 0.115218 0.264685i
\(301\) 201.046 + 328.511i 0.667928 + 1.09140i
\(302\) 102.910 + 102.910i 0.340760 + 0.340760i
\(303\) −30.4745 113.733i −0.100576 0.375355i
\(304\) 10.8037 6.23750i 0.0355384 0.0205181i
\(305\) −213.584 15.9161i −0.700276 0.0521840i
\(306\) 50.7488 87.8994i 0.165846 0.287253i
\(307\) −292.629 292.629i −0.953190 0.953190i 0.0457623 0.998952i \(-0.485428\pi\)
−0.998952 + 0.0457623i \(0.985428\pi\)
\(308\) 186.491 196.290i 0.605491 0.637304i
\(309\) 222.760i 0.720905i
\(310\) 6.99778 20.0254i 0.0225735 0.0645979i
\(311\) 82.6523 + 143.158i 0.265763 + 0.460315i 0.967763 0.251862i \(-0.0810428\pi\)
−0.702000 + 0.712177i \(0.747709\pi\)
\(312\) −18.6433 + 69.5777i −0.0597541 + 0.223005i
\(313\) −30.0301 112.074i −0.0959429 0.358064i 0.901218 0.433366i \(-0.142674\pi\)
−0.997161 + 0.0753026i \(0.976008\pi\)
\(314\) 103.599i 0.329933i
\(315\) 99.9761 + 32.0901i 0.317385 + 0.101873i
\(316\) −59.7002 −0.188925
\(317\) 567.946 152.181i 1.79163 0.480065i 0.799007 0.601322i \(-0.205359\pi\)
0.992621 + 0.121257i \(0.0386926\pi\)
\(318\) −72.7171 19.4845i −0.228670 0.0612720i
\(319\) 612.029 353.355i 1.91859 1.10770i
\(320\) 36.0315 17.3704i 0.112598 0.0542825i
\(321\) −89.7707 −0.279660
\(322\) 336.987 99.6047i 1.04654 0.309331i
\(323\) 52.7575 52.7575i 0.163336 0.163336i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) 41.4621 + 365.242i 0.127576 + 1.12382i
\(326\) −47.4721 82.2241i −0.145620 0.252221i
\(327\) −242.201 + 64.8975i −0.740675 + 0.198463i
\(328\) −128.765 + 128.765i −0.392578 + 0.392578i
\(329\) −1.99914 78.0988i −0.00607642 0.237382i
\(330\) 133.347 195.760i 0.404082 0.593213i
\(331\) −78.4975 + 135.962i −0.237152 + 0.410760i −0.959896 0.280356i \(-0.909547\pi\)
0.722744 + 0.691116i \(0.242881\pi\)
\(332\) 4.95069 18.4762i 0.0149117 0.0556513i
\(333\) 1.26775 + 0.339692i 0.00380705 + 0.00102010i
\(334\) 160.328 + 92.5655i 0.480024 + 0.277142i
\(335\) −20.2766 + 3.84532i −0.0605272 + 0.0114786i
\(336\) 25.3155 + 41.3657i 0.0753438 + 0.123112i
\(337\) −208.968 208.968i −0.620082 0.620082i 0.325470 0.945552i \(-0.394477\pi\)
−0.945552 + 0.325470i \(0.894477\pi\)
\(338\) −17.2738 64.4666i −0.0511058 0.190729i
\(339\) −278.429 + 160.751i −0.821325 + 0.474192i
\(340\) 181.266 156.124i 0.533135 0.459188i
\(341\) 29.0090 50.2451i 0.0850704 0.147346i
\(342\) 9.35624 + 9.35624i 0.0273574 + 0.0273574i
\(343\) −223.220 + 260.426i −0.650788 + 0.759259i
\(344\) 155.623i 0.452394i
\(345\) 276.911 133.496i 0.802642 0.386945i
\(346\) 124.357 + 215.393i 0.359414 + 0.622523i
\(347\) 69.5374 259.517i 0.200396 0.747888i −0.790408 0.612581i \(-0.790131\pi\)
0.990804 0.135307i \(-0.0432021\pi\)
\(348\) 32.7627 + 122.272i 0.0941456 + 0.351356i
\(349\) 260.737i 0.747097i −0.927611 0.373549i \(-0.878141\pi\)
0.927611 0.373549i \(-0.121859\pi\)
\(350\) 197.503 + 149.139i 0.564295 + 0.426111i
\(351\) −76.4016 −0.217668
\(352\) 105.674 28.3153i 0.300210 0.0804411i
\(353\) 240.936 + 64.5587i 0.682539 + 0.182886i 0.583396 0.812188i \(-0.301723\pi\)
0.0991424 + 0.995073i \(0.468390\pi\)
\(354\) 84.4000 48.7284i 0.238418 0.137651i
\(355\) −176.234 365.562i −0.496433 1.02975i
\(356\) 234.047 0.657435
\(357\) 210.280 + 199.783i 0.589019 + 0.559617i
\(358\) −254.267 + 254.267i −0.710243 + 0.710243i
\(359\) 508.866 + 293.794i 1.41746 + 0.818368i 0.996075 0.0885160i \(-0.0282124\pi\)
0.421380 + 0.906884i \(0.361546\pi\)
\(360\) 27.6877 + 32.1464i 0.0769101 + 0.0892957i
\(361\) −175.637 304.212i −0.486528 0.842692i
\(362\) −156.700 + 41.9877i −0.432873 + 0.115988i
\(363\) 309.889 309.889i 0.853689 0.853689i
\(364\) −180.846 98.3290i −0.496829 0.270135i
\(365\) −97.7601 515.495i −0.267836 1.41231i
\(366\) 52.4623 90.8673i 0.143339 0.248271i
\(367\) −17.8386 + 66.5746i −0.0486066 + 0.181402i −0.985961 0.166974i \(-0.946600\pi\)
0.937355 + 0.348377i \(0.113267\pi\)
\(368\) 137.149 + 36.7489i 0.372687 + 0.0998611i
\(369\) −167.271 96.5741i −0.453310 0.261718i
\(370\) 2.55671 + 1.74157i 0.00691003 + 0.00470695i
\(371\) 102.766 189.006i 0.276997 0.509450i
\(372\) 7.34834 + 7.34834i 0.0197536 + 0.0197536i
\(373\) 81.1209 + 302.747i 0.217482 + 0.811655i 0.985278 + 0.170960i \(0.0546869\pi\)
−0.767796 + 0.640695i \(0.778646\pi\)
\(374\) 566.649 327.155i 1.51510 0.874746i
\(375\) 191.543 + 100.926i 0.510782 + 0.269137i
\(376\) 15.7835 27.3378i 0.0419774 0.0727070i
\(377\) −379.925 379.925i −1.00776 1.00776i
\(378\) −35.4304 + 37.2919i −0.0937312 + 0.0986559i
\(379\) 400.395i 1.05645i −0.849104 0.528226i \(-0.822858\pi\)
0.849104 0.528226i \(-0.177142\pi\)
\(380\) 13.5435 + 28.0933i 0.0356408 + 0.0739297i
\(381\) −11.1472 19.3076i −0.0292578 0.0506760i
\(382\) −116.620 + 435.232i −0.305288 + 1.13935i
\(383\) 155.366 + 579.836i 0.405657 + 1.51393i 0.802842 + 0.596192i \(0.203320\pi\)
−0.397185 + 0.917739i \(0.630013\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 454.720 + 501.406i 1.18109 + 1.30235i
\(386\) 143.863 0.372701
\(387\) −159.439 + 42.7216i −0.411987 + 0.110392i
\(388\) −174.421 46.7361i −0.449540 0.120454i
\(389\) 113.750 65.6735i 0.292416 0.168826i −0.346615 0.938008i \(-0.612669\pi\)
0.639031 + 0.769181i \(0.279336\pi\)
\(390\) −170.000 59.4057i −0.435897 0.152322i
\(391\) 849.194 2.17185
\(392\) −131.860 + 42.6726i −0.336377 + 0.108859i
\(393\) −263.285 + 263.285i −0.669936 + 0.669936i
\(394\) −377.297 217.833i −0.957608 0.552875i
\(395\) 11.0913 148.838i 0.0280792 0.376805i
\(396\) 58.0191 + 100.492i 0.146513 + 0.253768i
\(397\) −657.925 + 176.291i −1.65724 + 0.444057i −0.961628 0.274358i \(-0.911535\pi\)
−0.695615 + 0.718415i \(0.744868\pi\)
\(398\) 22.9028 22.9028i 0.0575447 0.0575447i
\(399\) −32.2523 + 19.7382i −0.0808329 + 0.0494691i
\(400\) 36.6119 + 93.0568i 0.0915298 + 0.232642i
\(401\) −17.6363 + 30.5469i −0.0439807 + 0.0761769i −0.887178 0.461428i \(-0.847337\pi\)
0.843197 + 0.537605i \(0.180671\pi\)
\(402\) 2.61679 9.76601i 0.00650944 0.0242935i
\(403\) −42.6067 11.4164i −0.105724 0.0283286i
\(404\) 117.745 + 67.9799i 0.291447 + 0.168267i
\(405\) −25.3339 + 37.1913i −0.0625527 + 0.0918305i
\(406\) −361.629 + 9.25683i −0.890711 + 0.0228001i
\(407\) 5.98276 + 5.98276i 0.0146997 + 0.0146997i
\(408\) 30.3334 + 113.206i 0.0743466 + 0.277465i
\(409\) −114.297 + 65.9892i −0.279454 + 0.161343i −0.633176 0.774008i \(-0.718249\pi\)
0.353722 + 0.935350i \(0.384916\pi\)
\(410\) −297.101 344.946i −0.724637 0.841332i
\(411\) 112.346 194.589i 0.273348 0.473453i
\(412\) −181.883 181.883i −0.441463 0.441463i
\(413\) 78.9429 + 267.083i 0.191145 + 0.646691i
\(414\) 150.600i 0.363767i
\(415\) 45.1431 + 15.7751i 0.108779 + 0.0380122i
\(416\) −41.5878 72.0321i −0.0999706 0.173154i
\(417\) 30.5261 113.925i 0.0732040 0.273201i
\(418\) 22.0770 + 82.3926i 0.0528159 + 0.197112i
\(419\) 578.241i 1.38005i 0.723786 + 0.690024i \(0.242400\pi\)
−0.723786 + 0.690024i \(0.757600\pi\)
\(420\) −107.832 + 55.4287i −0.256742 + 0.131973i
\(421\) 494.086 1.17360 0.586801 0.809732i \(-0.300387\pi\)
0.586801 + 0.809732i \(0.300387\pi\)
\(422\) 251.588 67.4128i 0.596180 0.159746i
\(423\) 32.3410 + 8.66575i 0.0764563 + 0.0204864i
\(424\) 75.2823 43.4643i 0.177553 0.102510i
\(425\) 355.554 + 480.917i 0.836598 + 1.13157i
\(426\) 198.813 0.466697
\(427\) 217.380 + 206.529i 0.509086 + 0.483674i
\(428\) 73.2975 73.2975i 0.171256 0.171256i
\(429\) −426.541 246.264i −0.994269 0.574042i
\(430\) −387.983 28.9122i −0.902286 0.0672377i
\(431\) −34.7168 60.1313i −0.0805494 0.139516i 0.822937 0.568133i \(-0.192334\pi\)
−0.903486 + 0.428617i \(0.859001\pi\)
\(432\) −20.0764 + 5.37945i −0.0464731 + 0.0124524i
\(433\) 473.011 473.011i 1.09240 1.09240i 0.0971324 0.995271i \(-0.469033\pi\)
0.995271 0.0971324i \(-0.0309670\pi\)
\(434\) −25.3308 + 15.5023i −0.0583659 + 0.0357195i
\(435\) −310.921 + 58.9641i −0.714762 + 0.135550i
\(436\) 144.767 250.745i 0.332036 0.575102i
\(437\) −28.6526 + 106.933i −0.0655667 + 0.244698i
\(438\) 248.283 + 66.5271i 0.566855 + 0.151888i
\(439\) 304.676 + 175.905i 0.694024 + 0.400695i 0.805118 0.593115i \(-0.202102\pi\)
−0.111094 + 0.993810i \(0.535435\pi\)
\(440\) 50.9600 + 268.715i 0.115818 + 0.610716i
\(441\) −79.9169 123.379i −0.181218 0.279770i
\(442\) −351.755 351.755i −0.795825 0.795825i
\(443\) −60.7333 226.660i −0.137095 0.511647i −0.999980 0.00624700i \(-0.998012\pi\)
0.862885 0.505400i \(-0.168655\pi\)
\(444\) −1.31247 + 0.757754i −0.00295601 + 0.00170665i
\(445\) −43.4819 + 583.499i −0.0977122 + 1.31123i
\(446\) −150.693 + 261.007i −0.337876 + 0.585218i
\(447\) 295.339 + 295.339i 0.660714 + 0.660714i
\(448\) −54.4450 13.1050i −0.121529 0.0292521i
\(449\) 40.1949i 0.0895210i 0.998998 + 0.0447605i \(0.0142525\pi\)
−0.998998 + 0.0447605i \(0.985748\pi\)
\(450\) −85.2878 + 63.0555i −0.189528 + 0.140123i
\(451\) −622.571 1078.32i −1.38042 2.39096i
\(452\) 96.0837 358.589i 0.212575 0.793339i
\(453\) −46.1331 172.171i −0.101839 0.380068i
\(454\) 135.575i 0.298624i
\(455\) 278.741 432.597i 0.612617 0.950762i
\(456\) −15.2787 −0.0335059
\(457\) 229.905 61.6028i 0.503074 0.134798i 0.00164767 0.999999i \(-0.499476\pi\)
0.501426 + 0.865200i \(0.332809\pi\)
\(458\) −9.82666 2.63305i −0.0214556 0.00574901i
\(459\) −107.654 + 62.1543i −0.234541 + 0.135412i
\(460\) −117.098 + 335.096i −0.254561 + 0.728470i
\(461\) 782.863 1.69818 0.849092 0.528245i \(-0.177150\pi\)
0.849092 + 0.528245i \(0.177150\pi\)
\(462\) −318.006 + 93.9944i −0.688325 + 0.203451i
\(463\) 504.302 504.302i 1.08921 1.08921i 0.0935957 0.995610i \(-0.470164\pi\)
0.995610 0.0935957i \(-0.0298361\pi\)
\(464\) −126.585 73.0840i −0.272813 0.157509i
\(465\) −19.6852 + 16.9549i −0.0423339 + 0.0364621i
\(466\) 74.4083 + 128.879i 0.159674 + 0.276564i
\(467\) −208.514 + 55.8712i −0.446497 + 0.119639i −0.475060 0.879953i \(-0.657574\pi\)
0.0285628 + 0.999592i \(0.490907\pi\)
\(468\) 62.3817 62.3817i 0.133294 0.133294i
\(469\) 25.3837 + 13.8016i 0.0541231 + 0.0294277i
\(470\) 65.2233 + 44.4286i 0.138773 + 0.0945289i
\(471\) −63.4412 + 109.883i −0.134695 + 0.233298i
\(472\) −29.1258 + 108.699i −0.0617071 + 0.230294i
\(473\) −1027.83 275.407i −2.17301 0.582257i
\(474\) 63.3216 + 36.5588i 0.133590 + 0.0771282i
\(475\) −72.5552 + 28.5458i −0.152748 + 0.0600965i
\(476\) −334.815 + 8.57046i −0.703393 + 0.0180052i
\(477\) 65.1964 + 65.1964i 0.136680 + 0.136680i
\(478\) 36.9847 + 138.029i 0.0773739 + 0.288763i
\(479\) −144.556 + 83.4594i −0.301787 + 0.174237i −0.643245 0.765660i \(-0.722413\pi\)
0.341458 + 0.939897i \(0.389079\pi\)
\(480\) −48.8543 3.64059i −0.101780 0.00758456i
\(481\) 3.21631 5.57081i 0.00668672 0.0115817i
\(482\) 170.426 + 170.426i 0.353582 + 0.353582i
\(483\) −418.424 100.715i −0.866303 0.208520i
\(484\) 506.047i 1.04555i
\(485\) 148.922 426.165i 0.307055 0.878691i
\(486\) −11.0227 19.0919i −0.0226805 0.0392837i
\(487\) 181.869 678.744i 0.373447 1.39372i −0.482153 0.876087i \(-0.660145\pi\)
0.855600 0.517637i \(-0.173188\pi\)
\(488\) 31.3576 + 117.028i 0.0642573 + 0.239812i
\(489\) 116.283i 0.237797i
\(490\) −81.8890 336.666i −0.167121 0.687074i
\(491\) 71.9764 0.146591 0.0732957 0.997310i \(-0.476648\pi\)
0.0732957 + 0.997310i \(0.476648\pi\)
\(492\) 215.429 57.7240i 0.437864 0.117325i
\(493\) −844.414 226.260i −1.71281 0.458945i
\(494\) 56.1625 32.4254i 0.113689 0.0656385i
\(495\) −261.314 + 125.977i −0.527907 + 0.254499i
\(496\) −11.9998 −0.0241931
\(497\) −132.958 + 552.379i −0.267521 + 1.11143i
\(498\) −16.5653 + 16.5653i −0.0332637 + 0.0332637i
\(499\) −33.5121 19.3482i −0.0671586 0.0387740i 0.466045 0.884761i \(-0.345679\pi\)
−0.533203 + 0.845987i \(0.679012\pi\)
\(500\) −238.801 + 73.9883i −0.477601 + 0.147977i
\(501\) −113.369 196.361i −0.226286 0.391938i
\(502\) −184.706 + 49.4919i −0.367941 + 0.0985894i
\(503\) 152.122 152.122i 0.302429 0.302429i −0.539535 0.841963i \(-0.681400\pi\)
0.841963 + 0.539535i \(0.181400\pi\)
\(504\) −1.51992 59.3775i −0.00301572 0.117813i
\(505\) −191.355 + 280.918i −0.378920 + 0.556273i
\(506\) −485.425 + 840.781i −0.959338 + 1.66162i
\(507\) −21.1560 + 78.9551i −0.0417277 + 0.155730i
\(508\) 24.8662 + 6.66289i 0.0489493 + 0.0131159i
\(509\) 500.986 + 289.245i 0.984256 + 0.568260i 0.903552 0.428478i \(-0.140950\pi\)
0.0807035 + 0.996738i \(0.474283\pi\)
\(510\) −287.867 + 54.5921i −0.564446 + 0.107043i
\(511\) −350.879 + 645.334i −0.686652 + 1.26288i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −4.19429 15.6533i −0.00817600 0.0305133i
\(514\) −261.387 + 150.912i −0.508534 + 0.293602i
\(515\) 487.240 419.659i 0.946097 0.814871i
\(516\) 95.2995 165.064i 0.184689 0.319891i
\(517\) 152.624 + 152.624i 0.295211 + 0.295211i
\(518\) −1.22761 4.15330i −0.00236990 0.00801795i
\(519\) 304.612i 0.586920i
\(520\) 187.309 90.2996i 0.360209 0.173653i
\(521\) −158.312 274.205i −0.303862 0.526305i 0.673145 0.739511i \(-0.264943\pi\)
−0.977007 + 0.213205i \(0.931610\pi\)
\(522\) 40.1259 149.752i 0.0768695 0.286881i
\(523\) −169.840 633.850i −0.324741 1.21195i −0.914572 0.404423i \(-0.867472\pi\)
0.589831 0.807527i \(-0.299194\pi\)
\(524\) 429.942i 0.820500i
\(525\) −118.155 279.131i −0.225058 0.531679i
\(526\) −329.512 −0.626449
\(527\) −69.3229 + 18.5750i −0.131542 + 0.0352467i
\(528\) −129.424 34.6790i −0.245121 0.0656799i
\(529\) −633.078 + 365.508i −1.19674 + 0.690941i
\(530\) 94.3740 + 195.760i 0.178064 + 0.369359i
\(531\) −119.360 −0.224783
\(532\) 10.2178 42.4501i 0.0192063 0.0797934i
\(533\) −669.384 + 669.384i −1.25588 + 1.25588i
\(534\) −248.244 143.324i −0.464877 0.268397i
\(535\) 169.120 + 196.354i 0.316111 + 0.367018i
\(536\) 5.83731 + 10.1105i 0.0108905 + 0.0188629i
\(537\) 425.397 113.985i 0.792173 0.212262i
\(538\) −169.347 + 169.347i −0.314771 + 0.314771i
\(539\) −48.4831 946.404i −0.0899501 1.75585i
\(540\) −9.68159 51.0516i −0.0179289 0.0945400i
\(541\) −279.416 + 483.962i −0.516480 + 0.894570i 0.483337 + 0.875434i \(0.339425\pi\)
−0.999817 + 0.0191352i \(0.993909\pi\)
\(542\) 35.6518 133.054i 0.0657782 0.245488i
\(543\) 191.918 + 51.4242i 0.353440 + 0.0947039i
\(544\) −117.199 67.6650i −0.215440 0.124384i
\(545\) 598.233 + 407.502i 1.09768 + 0.747710i
\(546\) 131.602 + 215.039i 0.241029 + 0.393844i
\(547\) 374.501 + 374.501i 0.684646 + 0.684646i 0.961043 0.276398i \(-0.0891407\pi\)
−0.276398 + 0.961043i \(0.589141\pi\)
\(548\) 67.1511 + 250.611i 0.122539 + 0.457320i
\(549\) −111.289 + 64.2529i −0.202713 + 0.117036i
\(550\) −679.398 + 77.1250i −1.23527 + 0.140227i
\(551\) 56.9826 98.6968i 0.103417 0.179123i
\(552\) −122.964 122.964i −0.222761 0.222761i
\(553\) −143.921 + 151.483i −0.260255 + 0.273929i
\(554\) 109.316i 0.197322i
\(555\) −1.64531 3.41287i −0.00296453 0.00614932i
\(556\) 68.0948 + 117.944i 0.122473 + 0.212129i
\(557\) −62.7273 + 234.101i −0.112616 + 0.420290i −0.999098 0.0424747i \(-0.986476\pi\)
0.886481 + 0.462765i \(0.153142\pi\)
\(558\) −3.29417 12.2940i −0.00590353 0.0220323i
\(559\) 809.004i 1.44723i
\(560\) 42.7868 133.302i 0.0764049 0.238038i
\(561\) −801.363 −1.42845
\(562\) 582.507 156.082i 1.03649 0.277727i
\(563\) 940.702 + 252.060i 1.67087 + 0.447709i 0.965346 0.260973i \(-0.0840433\pi\)
0.705528 + 0.708682i \(0.250710\pi\)
\(564\) −33.4819 + 19.3308i −0.0593650 + 0.0342744i
\(565\) 876.144 + 306.165i 1.55070 + 0.541885i
\(566\) 100.268 0.177151
\(567\) 60.4162 17.8574i 0.106554 0.0314946i
\(568\) −162.330 + 162.330i −0.285792 + 0.285792i
\(569\) 258.001 + 148.957i 0.453429 + 0.261788i 0.709277 0.704929i \(-0.249021\pi\)
−0.255848 + 0.966717i \(0.582355\pi\)
\(570\) 2.83852 38.0911i 0.00497986 0.0668265i
\(571\) −185.885 321.962i −0.325543 0.563857i 0.656079 0.754692i \(-0.272214\pi\)
−0.981622 + 0.190835i \(0.938880\pi\)
\(572\) 549.343 147.196i 0.960390 0.257336i
\(573\) 390.219 390.219i 0.681010 0.681010i
\(574\) 16.3095 + 637.148i 0.0284137 + 1.11001i
\(575\) −813.670 354.191i −1.41508 0.615984i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) 68.6631 256.254i 0.119000 0.444115i −0.880555 0.473944i \(-0.842830\pi\)
0.999555 + 0.0298294i \(0.00949642\pi\)
\(578\) −387.021 103.702i −0.669587 0.179415i
\(579\) −152.589 88.0975i −0.263539 0.152155i
\(580\) 205.722 302.010i 0.354693 0.520707i
\(581\) −34.9467 57.1031i −0.0601492 0.0982842i
\(582\) 156.382 + 156.382i 0.268698 + 0.268698i
\(583\) 153.838 + 574.130i 0.263873 + 0.984786i
\(584\) −257.041 + 148.403i −0.440139 + 0.254114i
\(585\) 143.933 + 167.112i 0.246040 + 0.285662i
\(586\) −27.6890 + 47.9587i −0.0472508 + 0.0818408i
\(587\) −348.454 348.454i −0.593618 0.593618i 0.344989 0.938607i \(-0.387883\pi\)
−0.938607 + 0.344989i \(0.887883\pi\)
\(588\) 165.990 + 35.4863i 0.282296 + 0.0603509i
\(589\) 9.35608i 0.0158847i
\(590\) −265.585 92.8075i −0.450143 0.157301i
\(591\) 266.790 + 462.093i 0.451421 + 0.781883i
\(592\) 0.452922 1.69033i 0.000765071 0.00285529i
\(593\) 103.985 + 388.078i 0.175354 + 0.654432i 0.996491 + 0.0837000i \(0.0266738\pi\)
−0.821136 + 0.570732i \(0.806660\pi\)
\(594\) 142.117i 0.239254i
\(595\) 40.8361 836.315i 0.0686320 1.40557i
\(596\) −482.287 −0.809206
\(597\) −38.3171 + 10.2670i −0.0641828 + 0.0171977i
\(598\) 712.964 + 191.038i 1.19225 + 0.319462i
\(599\) −471.995 + 272.507i −0.787972 + 0.454936i −0.839248 0.543749i \(-0.817004\pi\)
0.0512762 + 0.998685i \(0.483671\pi\)
\(600\) 18.1526 121.122i 0.0302544 0.201870i
\(601\) 628.276 1.04539 0.522693 0.852521i \(-0.324928\pi\)
0.522693 + 0.852521i \(0.324928\pi\)
\(602\) 394.878 + 375.167i 0.655943 + 0.623200i
\(603\) −8.75596 + 8.75596i −0.0145207 + 0.0145207i
\(604\) 178.245 + 102.910i 0.295107 + 0.170380i
\(605\) −1261.62 94.0149i −2.08532 0.155397i
\(606\) −83.2580 144.207i −0.137389 0.237966i
\(607\) −550.219 + 147.431i −0.906457 + 0.242884i −0.681787 0.731551i \(-0.738797\pi\)
−0.224670 + 0.974435i \(0.572130\pi\)
\(608\) 12.4750 12.4750i 0.0205181 0.0205181i
\(609\) 389.234 + 211.633i 0.639136 + 0.347509i
\(610\) −297.587 + 56.4354i −0.487847 + 0.0925170i
\(611\) 82.0501 142.115i 0.134288 0.232594i
\(612\) 37.1507 138.648i 0.0607037 0.226549i
\(613\) 136.360 + 36.5375i 0.222447 + 0.0596044i 0.368321 0.929699i \(-0.379933\pi\)
−0.145874 + 0.989303i \(0.546599\pi\)
\(614\) −506.849 292.629i −0.825487 0.476595i
\(615\) 103.888 + 547.807i 0.168923 + 0.890743i
\(616\) 182.905 336.397i 0.296923 0.546099i
\(617\) 21.2335 + 21.2335i 0.0344141 + 0.0344141i 0.724104 0.689690i \(-0.242253\pi\)
−0.689690 + 0.724104i \(0.742253\pi\)
\(618\) 81.5357 + 304.296i 0.131935 + 0.492388i
\(619\) 768.980 443.971i 1.24229 0.717239i 0.272733 0.962090i \(-0.412072\pi\)
0.969561 + 0.244851i \(0.0787390\pi\)
\(620\) 2.22936 29.9165i 0.00359574 0.0482524i
\(621\) 92.2231 159.735i 0.148507 0.257222i
\(622\) 165.305 + 165.305i 0.265763 + 0.265763i
\(623\) 564.225 593.869i 0.905657 0.953241i
\(624\) 101.869i 0.163251i
\(625\) −140.094 609.097i −0.224151 0.974554i
\(626\) −82.0438 142.104i −0.131060 0.227003i
\(627\) 27.0387 100.910i 0.0431240 0.160941i
\(628\) −37.9199 141.519i −0.0603820 0.225349i
\(629\) 10.4661i 0.0166393i
\(630\) 148.316 + 7.24204i 0.235422 + 0.0114953i
\(631\) −205.514 −0.325695 −0.162847 0.986651i \(-0.552068\pi\)
−0.162847 + 0.986651i \(0.552068\pi\)
\(632\) −81.5520 + 21.8518i −0.129038 + 0.0345756i
\(633\) −308.131 82.5634i −0.486779 0.130432i
\(634\) 720.127 415.765i 1.13585 0.655781i
\(635\) −21.2309 + 60.7558i −0.0334345 + 0.0956785i
\(636\) −106.465 −0.167398
\(637\) −685.470 + 221.832i −1.07609 + 0.348245i
\(638\) 706.711 706.711i 1.10770 1.10770i
\(639\) −210.873 121.747i −0.330004 0.190528i
\(640\) 42.8619 36.9169i 0.0669718 0.0576826i
\(641\) −351.377 608.603i −0.548170 0.949458i −0.998400 0.0565458i \(-0.981991\pi\)
0.450230 0.892913i \(-0.351342\pi\)
\(642\) −122.629 + 32.8584i −0.191011 + 0.0511813i
\(643\) 839.690 839.690i 1.30589 1.30589i 0.381542 0.924351i \(-0.375393\pi\)
0.924351 0.381542i \(-0.124607\pi\)
\(644\) 423.875 259.408i 0.658192 0.402808i
\(645\) 393.813 + 268.256i 0.610563 + 0.415901i
\(646\) 52.7575 91.3787i 0.0816680 0.141453i
\(647\) −165.502 + 617.660i −0.255798 + 0.954653i 0.711846 + 0.702336i \(0.247859\pi\)
−0.967645 + 0.252317i \(0.918807\pi\)
\(648\) 24.5885 + 6.58846i 0.0379452 + 0.0101674i
\(649\) −666.371 384.729i −1.02677 0.592804i
\(650\) 190.326 + 483.753i 0.292809 + 0.744235i
\(651\) 36.3605 0.930742i 0.0558533 0.00142971i
\(652\) −94.9443 94.9443i −0.145620 0.145620i
\(653\) −113.984 425.395i −0.174555 0.651447i −0.996627 0.0820642i \(-0.973849\pi\)
0.822072 0.569383i \(-0.192818\pi\)
\(654\) −307.098 + 177.303i −0.469569 + 0.271106i
\(655\) 1071.88 + 79.8760i 1.63646 + 0.121948i
\(656\) −128.765 + 223.028i −0.196289 + 0.339982i
\(657\) −222.604 222.604i −0.338819 0.338819i
\(658\) −31.3170 105.953i −0.0475942 0.161023i
\(659\) 455.444i 0.691114i 0.938398 + 0.345557i \(0.112310\pi\)
−0.938398 + 0.345557i \(0.887690\pi\)
\(660\) 110.502 316.222i 0.167428 0.479124i
\(661\) 179.361 + 310.663i 0.271348 + 0.469989i 0.969207 0.246246i \(-0.0791972\pi\)
−0.697859 + 0.716235i \(0.745864\pi\)
\(662\) −57.4641 + 214.459i −0.0868038 + 0.323956i
\(663\) 157.687 + 588.497i 0.237839 + 0.887627i
\(664\) 27.0511i 0.0407396i
\(665\) 103.933 + 33.3603i 0.156291 + 0.0501658i
\(666\) 1.85611 0.00278695
\(667\) 1252.92 335.719i 1.87844 0.503327i
\(668\) 252.894 + 67.7626i 0.378583 + 0.101441i
\(669\) 319.667 184.560i 0.477828 0.275874i
\(670\) −26.2909 + 12.6746i −0.0392401 + 0.0189172i
\(671\) −828.420 −1.23461
\(672\) 49.7226 + 47.2405i 0.0739919 + 0.0702984i
\(673\) 412.089 412.089i 0.612316 0.612316i −0.331233 0.943549i \(-0.607464\pi\)
0.943549 + 0.331233i \(0.107464\pi\)
\(674\) −361.943 208.968i −0.537007 0.310041i
\(675\) 129.075 14.6525i 0.191222 0.0217075i
\(676\) −47.1928 81.7403i −0.0698118 0.120918i
\(677\) −619.729 + 166.056i −0.915404 + 0.245282i −0.685620 0.727960i \(-0.740469\pi\)
−0.229784 + 0.973242i \(0.573802\pi\)
\(678\) −321.502 + 321.502i −0.474192 + 0.474192i
\(679\) −539.071 + 329.908i −0.793919 + 0.485873i
\(680\) 190.468 279.617i 0.280101 0.411201i
\(681\) −83.0227 + 143.799i −0.121913 + 0.211159i
\(682\) 21.2361 79.2541i 0.0311379 0.116208i
\(683\) −661.567 177.266i −0.968620 0.259541i −0.260375 0.965508i \(-0.583846\pi\)
−0.708245 + 0.705967i \(0.750513\pi\)
\(684\) 16.2055 + 9.35624i 0.0236922 + 0.0136787i
\(685\) −637.272 + 120.854i −0.930324 + 0.176430i
\(686\) −209.602 + 437.453i −0.305543 + 0.637686i
\(687\) 8.81034 + 8.81034i 0.0128244 + 0.0128244i
\(688\) 56.9621 + 212.586i 0.0827938 + 0.308991i
\(689\) 391.353 225.948i 0.568001 0.327936i
\(690\) 329.405 283.716i 0.477399 0.411182i
\(691\) −205.847 + 356.537i −0.297897 + 0.515972i −0.975655 0.219313i \(-0.929618\pi\)
0.677758 + 0.735285i \(0.262952\pi\)
\(692\) 248.714 + 248.714i 0.359414 + 0.359414i
\(693\) 394.856 + 95.0421i 0.569778 + 0.137146i
\(694\) 379.960i 0.547492i
\(695\) −306.695 + 147.854i −0.441287 + 0.212740i
\(696\) 89.5092 + 155.035i 0.128605 + 0.222751i
\(697\) −398.644 + 1487.76i −0.571942 + 2.13452i
\(698\) −95.4364 356.173i −0.136728 0.510277i
\(699\) 182.262i 0.260747i
\(700\) 324.383 + 131.436i 0.463405 + 0.187766i
\(701\) 612.759 0.874122 0.437061 0.899432i \(-0.356019\pi\)
0.437061 + 0.899432i \(0.356019\pi\)
\(702\) −104.367 + 27.9649i −0.148670 + 0.0398361i
\(703\) 1.31793 + 0.353138i 0.00187472 + 0.000502329i
\(704\) 133.989 77.3587i 0.190326 0.109885i
\(705\) −41.9729 87.0646i −0.0595361 0.123496i
\(706\) 352.755 0.499653
\(707\) 456.343 134.883i 0.645463 0.190782i
\(708\) 97.4567 97.4567i 0.137651 0.137651i
\(709\) −494.328 285.400i −0.697218 0.402539i 0.109092 0.994032i \(-0.465206\pi\)
−0.806311 + 0.591492i \(0.798539\pi\)
\(710\) −374.545 434.861i −0.527528 0.612480i
\(711\) −44.7752 77.5529i −0.0629749 0.109076i
\(712\) 319.714 85.6671i 0.449037 0.120319i
\(713\) 75.2985 75.2985i 0.105608 0.105608i
\(714\) 360.373 + 195.941i 0.504725 + 0.274427i
\(715\) 264.914 + 1396.91i 0.370509 + 1.95372i
\(716\) −254.267 + 440.404i −0.355122 + 0.615089i
\(717\) 45.2969 169.050i 0.0631755 0.235774i
\(718\) 802.661 + 215.072i 1.11791 + 0.299544i
\(719\) −650.053 375.309i −0.904108 0.521987i −0.0255771 0.999673i \(-0.508142\pi\)
−0.878531 + 0.477686i \(0.841476\pi\)
\(720\) 49.5885 + 33.7785i 0.0688728 + 0.0469146i
\(721\) −899.978 + 23.0373i −1.24824 + 0.0319518i
\(722\) −351.273 351.273i −0.486528 0.486528i
\(723\) −76.4001 285.129i −0.105671 0.394369i
\(724\) −198.688 + 114.712i −0.274431 + 0.158443i
\(725\) 714.718 + 568.992i 0.985818 + 0.784816i
\(726\) 309.889 536.744i 0.426845 0.739316i
\(727\) −578.879 578.879i −0.796257 0.796257i 0.186246 0.982503i \(-0.440368\pi\)
−0.982503 + 0.186246i \(0.940368\pi\)
\(728\) −283.031 68.1257i −0.388779 0.0935793i
\(729\) 27.0000i 0.0370370i
\(730\) −322.227 668.396i −0.441407 0.915612i
\(731\) 658.141 + 1139.93i 0.900330 + 1.55942i
\(732\) 38.4050 143.330i 0.0524659 0.195805i
\(733\) 218.521 + 815.530i 0.298118 + 1.11259i 0.938709 + 0.344710i \(0.112023\pi\)
−0.640591 + 0.767882i \(0.721311\pi\)
\(734\) 97.4720i 0.132796i
\(735\) −119.309 + 407.235i −0.162325 + 0.554061i
\(736\) 200.800 0.272826
\(737\) −77.1065 + 20.6606i −0.104622 + 0.0280334i
\(738\) −263.845 70.6972i −0.357514 0.0957956i
\(739\) 465.097 268.524i 0.629360 0.363361i −0.151144 0.988512i \(-0.548296\pi\)
0.780504 + 0.625151i \(0.214962\pi\)
\(740\) 4.12999 + 1.44321i 0.00558107 + 0.00195028i
\(741\) −79.4258 −0.107187
\(742\) 71.1997 295.802i 0.0959564 0.398655i
\(743\) 705.189 705.189i 0.949110 0.949110i −0.0496559 0.998766i \(-0.515812\pi\)
0.998766 + 0.0496559i \(0.0158125\pi\)
\(744\) 12.7277 + 7.34834i 0.0171071 + 0.00987680i
\(745\) 89.6007 1202.38i 0.120269 1.61394i
\(746\) 221.626 + 383.868i 0.297086 + 0.514569i
\(747\) 27.7143 7.42604i 0.0371009 0.00994115i
\(748\) 654.310 654.310i 0.874746 0.874746i
\(749\) −9.28387 362.685i −0.0123950 0.484226i
\(750\) 298.595 + 67.7584i 0.398126 + 0.0903446i
\(751\) −298.749 + 517.448i −0.397802 + 0.689012i −0.993454 0.114230i \(-0.963560\pi\)
0.595653 + 0.803242i \(0.296893\pi\)
\(752\) 11.5543 43.1213i 0.0153648 0.0573422i
\(753\) 226.218 + 60.6149i 0.300422 + 0.0804979i
\(754\) −658.049 379.925i −0.872745 0.503879i
\(755\) −289.677 + 425.260i −0.383678 + 0.563259i
\(756\) −34.7490 + 63.9101i −0.0459643 + 0.0845372i
\(757\) 578.181 + 578.181i 0.763779 + 0.763779i 0.977003 0.213224i \(-0.0683965\pi\)
−0.213224 + 0.977003i \(0.568397\pi\)
\(758\) −146.555 546.950i −0.193344 0.721570i
\(759\) 1029.74 594.522i 1.35671 0.783297i
\(760\) 28.7836 + 33.4189i 0.0378732 + 0.0439722i
\(761\) −686.531 + 1189.11i −0.902144 + 1.56256i −0.0774372 + 0.996997i \(0.524674\pi\)
−0.824706 + 0.565561i \(0.808660\pi\)
\(762\) −22.2945 22.2945i −0.0292578 0.0292578i
\(763\) −287.242 971.810i −0.376464 1.27367i
\(764\) 637.224i