Properties

Label 210.3.v.a.37.8
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.8
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.a.193.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(4.87077 - 1.12941i) q^{5} -2.44949 q^{6} +(6.92053 - 1.05182i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(4.87077 - 1.12941i) q^{5} -2.44949 q^{6} +(6.92053 - 1.05182i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-6.24021 + 3.32563i) q^{10} +(-6.50271 - 11.2630i) q^{11} +(3.34607 - 0.896575i) q^{12} +(-0.863323 + 0.863323i) q^{13} +(-9.06862 + 3.96990i) q^{14} +(8.65526 + 0.293964i) q^{15} +(2.00000 - 3.46410i) q^{16} +(0.241886 - 0.902729i) q^{17} +(-4.09808 - 1.09808i) q^{18} +(5.84532 + 3.37480i) q^{19} +(7.30701 - 6.82697i) q^{20} +(12.0498 + 1.34266i) q^{21} +(13.0054 + 13.0054i) q^{22} +(-3.90901 - 14.5886i) q^{23} +(-4.24264 + 2.44949i) q^{24} +(22.4489 - 11.0022i) q^{25} +(0.863323 - 1.49532i) q^{26} +(3.67423 + 3.67423i) q^{27} +(10.9349 - 8.74233i) q^{28} +31.3119i q^{29} +(-11.9309 + 2.76648i) q^{30} +(23.4627 + 40.6387i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(-5.83017 - 21.7585i) q^{33} +1.32169i q^{34} +(32.5204 - 12.9393i) q^{35} +6.00000 q^{36} +(36.5911 - 9.80457i) q^{37} +(-9.22012 - 2.47052i) q^{38} +(-1.83139 + 1.05735i) q^{39} +(-7.48272 + 12.0004i) q^{40} -64.3783 q^{41} +(-16.9518 + 2.57642i) q^{42} +(17.7560 - 17.7560i) q^{43} +(-22.5261 - 13.0054i) q^{44} +(14.3488 + 4.37186i) q^{45} +(10.6796 + 18.4976i) q^{46} +(48.1749 - 12.9084i) q^{47} +(4.89898 - 4.89898i) q^{48} +(46.7873 - 14.5583i) q^{49} +(-26.6386 + 23.2462i) q^{50} +(0.809365 - 1.40186i) q^{51} +(-0.631996 + 2.35864i) q^{52} +(-72.2110 - 19.3489i) q^{53} +(-6.36396 - 3.67423i) q^{54} +(-44.3938 - 47.5154i) q^{55} +(-11.7374 + 15.9447i) q^{56} +(8.26653 + 8.26653i) q^{57} +(-11.4610 - 42.7729i) q^{58} +(-31.0409 + 17.9215i) q^{59} +(15.2853 - 8.14610i) q^{60} +(-54.5626 + 94.5052i) q^{61} +(-46.9255 - 46.9255i) q^{62} +(19.5578 + 7.64808i) q^{63} -8.00000i q^{64} +(-3.23000 + 5.18010i) q^{65} +(15.9283 + 27.5887i) q^{66} +(-16.2064 + 60.4832i) q^{67} +(-0.483771 - 1.80546i) q^{68} -26.1596i q^{69} +(-39.6875 + 29.5787i) q^{70} -74.7760 q^{71} +(-8.19615 + 2.19615i) q^{72} +(-80.2512 - 21.5032i) q^{73} +(-46.3957 + 26.7866i) q^{74} +(42.4898 - 8.34353i) q^{75} +13.4992 q^{76} +(-56.8489 - 71.1064i) q^{77} +(2.11470 - 2.11470i) q^{78} +(-83.9374 - 48.4613i) q^{79} +(5.82915 - 19.1317i) q^{80} +(4.50000 + 7.79423i) q^{81} +(87.9423 - 23.5641i) q^{82} +(31.9008 - 31.9008i) q^{83} +(22.2135 - 9.72423i) q^{84} +(0.158616 - 4.67018i) q^{85} +(-17.7560 + 30.7543i) q^{86} +(-14.0368 + 52.3859i) q^{87} +(35.5315 + 9.52063i) q^{88} +(44.1998 + 25.5187i) q^{89} +(-21.2010 - 0.720063i) q^{90} +(-5.06659 + 6.88271i) q^{91} +(-21.3592 - 21.3592i) q^{92} +(21.0361 + 78.5079i) q^{93} +(-61.0833 + 35.2664i) q^{94} +(32.2828 + 9.83610i) q^{95} +(-4.89898 + 8.48528i) q^{96} +(-83.5410 - 83.5410i) q^{97} +(-58.5840 + 37.0124i) q^{98} -39.0163i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 4.87077 1.12941i 0.974155 0.225882i
\(6\) −2.44949 −0.408248
\(7\) 6.92053 1.05182i 0.988647 0.150260i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −6.24021 + 3.32563i −0.624021 + 0.332563i
\(11\) −6.50271 11.2630i −0.591156 1.02391i −0.994077 0.108677i \(-0.965339\pi\)
0.402921 0.915235i \(-0.367995\pi\)
\(12\) 3.34607 0.896575i 0.278839 0.0747146i
\(13\) −0.863323 + 0.863323i −0.0664095 + 0.0664095i −0.739531 0.673122i \(-0.764953\pi\)
0.673122 + 0.739531i \(0.264953\pi\)
\(14\) −9.06862 + 3.96990i −0.647759 + 0.283564i
\(15\) 8.65526 + 0.293964i 0.577018 + 0.0195976i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 0.241886 0.902729i 0.0142286 0.0531017i −0.958447 0.285272i \(-0.907916\pi\)
0.972675 + 0.232170i \(0.0745827\pi\)
\(18\) −4.09808 1.09808i −0.227671 0.0610042i
\(19\) 5.84532 + 3.37480i 0.307648 + 0.177621i 0.645874 0.763444i \(-0.276493\pi\)
−0.338225 + 0.941065i \(0.609827\pi\)
\(20\) 7.30701 6.82697i 0.365351 0.341349i
\(21\) 12.0498 + 1.34266i 0.573799 + 0.0639361i
\(22\) 13.0054 + 13.0054i 0.591156 + 0.591156i
\(23\) −3.90901 14.5886i −0.169957 0.634287i −0.997356 0.0726729i \(-0.976847\pi\)
0.827399 0.561615i \(-0.189820\pi\)
\(24\) −4.24264 + 2.44949i −0.176777 + 0.102062i
\(25\) 22.4489 11.0022i 0.897954 0.440089i
\(26\) 0.863323 1.49532i 0.0332047 0.0575123i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 10.9349 8.74233i 0.390532 0.312226i
\(29\) 31.3119i 1.07972i 0.841754 + 0.539861i \(0.181523\pi\)
−0.841754 + 0.539861i \(0.818477\pi\)
\(30\) −11.9309 + 2.76648i −0.397697 + 0.0922161i
\(31\) 23.4627 + 40.6387i 0.756863 + 1.31092i 0.944443 + 0.328675i \(0.106602\pi\)
−0.187580 + 0.982249i \(0.560064\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) −5.83017 21.7585i −0.176672 0.659348i
\(34\) 1.32169i 0.0388732i
\(35\) 32.5204 12.9393i 0.929153 0.369694i
\(36\) 6.00000 0.166667
\(37\) 36.5911 9.80457i 0.988950 0.264988i 0.272141 0.962258i \(-0.412268\pi\)
0.716809 + 0.697269i \(0.245602\pi\)
\(38\) −9.22012 2.47052i −0.242635 0.0650138i
\(39\) −1.83139 + 1.05735i −0.0469586 + 0.0271116i
\(40\) −7.48272 + 12.0004i −0.187068 + 0.300009i
\(41\) −64.3783 −1.57020 −0.785101 0.619368i \(-0.787389\pi\)
−0.785101 + 0.619368i \(0.787389\pi\)
\(42\) −16.9518 + 2.57642i −0.403613 + 0.0613434i
\(43\) 17.7560 17.7560i 0.412931 0.412931i −0.469827 0.882758i \(-0.655684\pi\)
0.882758 + 0.469827i \(0.155684\pi\)
\(44\) −22.5261 13.0054i −0.511956 0.295578i
\(45\) 14.3488 + 4.37186i 0.318861 + 0.0971525i
\(46\) 10.6796 + 18.4976i 0.232165 + 0.402122i
\(47\) 48.1749 12.9084i 1.02500 0.274647i 0.293114 0.956077i \(-0.405308\pi\)
0.731883 + 0.681430i \(0.238642\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) 46.7873 14.5583i 0.954844 0.297108i
\(50\) −26.6386 + 23.2462i −0.532772 + 0.464923i
\(51\) 0.809365 1.40186i 0.0158699 0.0274875i
\(52\) −0.631996 + 2.35864i −0.0121538 + 0.0453585i
\(53\) −72.2110 19.3489i −1.36247 0.365073i −0.497749 0.867321i \(-0.665840\pi\)
−0.864724 + 0.502248i \(0.832506\pi\)
\(54\) −6.36396 3.67423i −0.117851 0.0680414i
\(55\) −44.3938 47.5154i −0.807161 0.863917i
\(56\) −11.7374 + 15.9447i −0.209597 + 0.284727i
\(57\) 8.26653 + 8.26653i 0.145027 + 0.145027i
\(58\) −11.4610 42.7729i −0.197603 0.737464i
\(59\) −31.0409 + 17.9215i −0.526117 + 0.303754i −0.739434 0.673229i \(-0.764907\pi\)
0.213317 + 0.976983i \(0.431573\pi\)
\(60\) 15.2853 8.14610i 0.254755 0.135768i
\(61\) −54.5626 + 94.5052i −0.894469 + 1.54927i −0.0600092 + 0.998198i \(0.519113\pi\)
−0.834460 + 0.551068i \(0.814220\pi\)
\(62\) −46.9255 46.9255i −0.756863 0.756863i
\(63\) 19.5578 + 7.64808i 0.310441 + 0.121398i
\(64\) 8.00000i 0.125000i
\(65\) −3.23000 + 5.18010i −0.0496924 + 0.0796938i
\(66\) 15.9283 + 27.5887i 0.241338 + 0.418010i
\(67\) −16.2064 + 60.4832i −0.241887 + 0.902734i 0.733036 + 0.680190i \(0.238103\pi\)
−0.974923 + 0.222544i \(0.928564\pi\)
\(68\) −0.483771 1.80546i −0.00711428 0.0265509i
\(69\) 26.1596i 0.379124i
\(70\) −39.6875 + 29.5787i −0.566965 + 0.422553i
\(71\) −74.7760 −1.05318 −0.526592 0.850118i \(-0.676530\pi\)
−0.526592 + 0.850118i \(0.676530\pi\)
\(72\) −8.19615 + 2.19615i −0.113835 + 0.0305021i
\(73\) −80.2512 21.5032i −1.09933 0.294565i −0.336839 0.941562i \(-0.609358\pi\)
−0.762492 + 0.646997i \(0.776025\pi\)
\(74\) −46.3957 + 26.7866i −0.626969 + 0.361981i
\(75\) 42.4898 8.34353i 0.566531 0.111247i
\(76\) 13.4992 0.177621
\(77\) −56.8489 71.1064i −0.738297 0.923460i
\(78\) 2.11470 2.11470i 0.0271116 0.0271116i
\(79\) −83.9374 48.4613i −1.06250 0.613434i −0.136377 0.990657i \(-0.543546\pi\)
−0.926122 + 0.377223i \(0.876879\pi\)
\(80\) 5.82915 19.1317i 0.0728643 0.239146i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 87.9423 23.5641i 1.07247 0.287367i
\(83\) 31.9008 31.9008i 0.384347 0.384347i −0.488318 0.872666i \(-0.662390\pi\)
0.872666 + 0.488318i \(0.162390\pi\)
\(84\) 22.2135 9.72423i 0.264446 0.115765i
\(85\) 0.158616 4.67018i 0.00186607 0.0549433i
\(86\) −17.7560 + 30.7543i −0.206465 + 0.357609i
\(87\) −14.0368 + 52.3859i −0.161342 + 0.602137i
\(88\) 35.5315 + 9.52063i 0.403767 + 0.108189i
\(89\) 44.1998 + 25.5187i 0.496627 + 0.286727i 0.727319 0.686299i \(-0.240766\pi\)
−0.230693 + 0.973027i \(0.574099\pi\)
\(90\) −21.2010 0.720063i −0.235566 0.00800070i
\(91\) −5.06659 + 6.88271i −0.0556768 + 0.0756342i
\(92\) −21.3592 21.3592i −0.232165 0.232165i
\(93\) 21.0361 + 78.5079i 0.226195 + 0.844171i
\(94\) −61.0833 + 35.2664i −0.649822 + 0.375175i
\(95\) 32.2828 + 9.83610i 0.339819 + 0.103538i
\(96\) −4.89898 + 8.48528i −0.0510310 + 0.0883883i
\(97\) −83.5410 83.5410i −0.861248 0.861248i 0.130235 0.991483i \(-0.458427\pi\)
−0.991483 + 0.130235i \(0.958427\pi\)
\(98\) −58.5840 + 37.0124i −0.597796 + 0.377677i
\(99\) 39.0163i 0.394104i
\(100\) 27.8803 41.5053i 0.278803 0.415053i
\(101\) 80.9688 + 140.242i 0.801671 + 1.38854i 0.918516 + 0.395385i \(0.129389\pi\)
−0.116844 + 0.993150i \(0.537278\pi\)
\(102\) −0.592496 + 2.21123i −0.00580879 + 0.0216787i
\(103\) −21.7008 80.9886i −0.210688 0.786297i −0.987640 0.156738i \(-0.949902\pi\)
0.776953 0.629559i \(-0.216764\pi\)
\(104\) 3.45329i 0.0332047i
\(105\) 60.2082 7.06939i 0.573411 0.0673275i
\(106\) 105.724 0.997399
\(107\) 71.7422 19.2233i 0.670488 0.179657i 0.0925131 0.995711i \(-0.470510\pi\)
0.577974 + 0.816055i \(0.303843\pi\)
\(108\) 10.0382 + 2.68973i 0.0929463 + 0.0249049i
\(109\) −106.923 + 61.7319i −0.980942 + 0.566347i −0.902554 0.430576i \(-0.858311\pi\)
−0.0783878 + 0.996923i \(0.524977\pi\)
\(110\) 78.0350 + 48.6580i 0.709409 + 0.442345i
\(111\) 65.6134 0.591112
\(112\) 10.1974 26.0770i 0.0910486 0.232831i
\(113\) −41.6631 + 41.6631i −0.368700 + 0.368700i −0.867003 0.498303i \(-0.833957\pi\)
0.498303 + 0.867003i \(0.333957\pi\)
\(114\) −14.3181 8.26653i −0.125597 0.0725134i
\(115\) −35.5164 66.6429i −0.308839 0.579504i
\(116\) 31.3119 + 54.2339i 0.269930 + 0.467533i
\(117\) −3.53796 + 0.947995i −0.0302390 + 0.00810252i
\(118\) 35.8429 35.8429i 0.303754 0.303754i
\(119\) 0.724467 6.50178i 0.00608795 0.0546368i
\(120\) −17.8985 + 16.7226i −0.149154 + 0.139355i
\(121\) −24.0705 + 41.6914i −0.198930 + 0.344557i
\(122\) 39.9426 149.068i 0.327398 1.22187i
\(123\) −107.707 28.8600i −0.875666 0.234634i
\(124\) 81.2773 + 46.9255i 0.655462 + 0.378431i
\(125\) 96.9172 78.9433i 0.775338 0.631547i
\(126\) −29.5158 3.28883i −0.234253 0.0261018i
\(127\) 105.461 + 105.461i 0.830399 + 0.830399i 0.987571 0.157172i \(-0.0502378\pi\)
−0.157172 + 0.987571i \(0.550238\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) 37.6662 21.7466i 0.291986 0.168578i
\(130\) 2.51622 8.25841i 0.0193555 0.0635262i
\(131\) 104.890 181.676i 0.800690 1.38684i −0.118472 0.992957i \(-0.537800\pi\)
0.919162 0.393879i \(-0.128867\pi\)
\(132\) −31.8567 31.8567i −0.241338 0.241338i
\(133\) 44.0024 + 17.2071i 0.330845 + 0.129377i
\(134\) 88.5535i 0.660847i
\(135\) 22.0461 + 13.7466i 0.163304 + 0.101827i
\(136\) 1.32169 + 2.28923i 0.00971829 + 0.0168326i
\(137\) −58.6283 + 218.804i −0.427943 + 1.59711i 0.329467 + 0.944167i \(0.393131\pi\)
−0.757410 + 0.652940i \(0.773536\pi\)
\(138\) 9.57507 + 35.7347i 0.0693846 + 0.258947i
\(139\) 42.1416i 0.303177i −0.988444 0.151588i \(-0.951561\pi\)
0.988444 0.151588i \(-0.0484389\pi\)
\(140\) 43.3876 54.9319i 0.309912 0.392371i
\(141\) 86.3848 0.612658
\(142\) 102.146 27.3699i 0.719337 0.192746i
\(143\) 15.3376 + 4.10969i 0.107256 + 0.0287391i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) 35.3641 + 152.513i 0.243890 + 1.05182i
\(146\) 117.496 0.804766
\(147\) 84.8031 3.38231i 0.576892 0.0230089i
\(148\) 53.5732 53.5732i 0.361981 0.361981i
\(149\) −66.4442 38.3616i −0.445934 0.257460i 0.260177 0.965561i \(-0.416219\pi\)
−0.706112 + 0.708101i \(0.749552\pi\)
\(150\) −54.9882 + 26.9498i −0.366588 + 0.179665i
\(151\) 15.4393 + 26.7416i 0.102247 + 0.177097i 0.912610 0.408831i \(-0.134064\pi\)
−0.810363 + 0.585928i \(0.800730\pi\)
\(152\) −18.4402 + 4.94105i −0.121317 + 0.0325069i
\(153\) 1.98253 1.98253i 0.0129577 0.0129577i
\(154\) 103.684 + 76.3250i 0.673271 + 0.495617i
\(155\) 160.179 + 171.443i 1.03342 + 1.10608i
\(156\) −2.11470 + 3.66277i −0.0135558 + 0.0234793i
\(157\) 16.6546 62.1560i 0.106081 0.395898i −0.892385 0.451275i \(-0.850969\pi\)
0.998466 + 0.0553769i \(0.0176360\pi\)
\(158\) 132.399 + 35.4761i 0.837967 + 0.224532i
\(159\) −112.138 64.7426i −0.705268 0.407186i
\(160\) −0.960084 + 28.2680i −0.00600052 + 0.176675i
\(161\) −42.3970 96.8493i −0.263335 0.601548i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) −24.2514 90.5074i −0.148782 0.555260i −0.999558 0.0297323i \(-0.990535\pi\)
0.850776 0.525528i \(-0.176132\pi\)
\(164\) −111.506 + 64.3783i −0.679917 + 0.392550i
\(165\) −52.9718 99.3960i −0.321041 0.602400i
\(166\) −31.9008 + 55.2538i −0.192174 + 0.332854i
\(167\) −30.1240 30.1240i −0.180383 0.180383i 0.611140 0.791523i \(-0.290711\pi\)
−0.791523 + 0.611140i \(0.790711\pi\)
\(168\) −26.7849 + 21.4143i −0.159434 + 0.127466i
\(169\) 167.509i 0.991180i
\(170\) 1.49273 + 6.43764i 0.00878076 + 0.0378685i
\(171\) 10.1244 + 17.5360i 0.0592070 + 0.102549i
\(172\) 12.9983 48.5104i 0.0755716 0.282037i
\(173\) −15.2810 57.0293i −0.0883293 0.329649i 0.907595 0.419848i \(-0.137917\pi\)
−0.995924 + 0.0901984i \(0.971250\pi\)
\(174\) 76.6983i 0.440795i
\(175\) 143.786 99.7533i 0.821632 0.570019i
\(176\) −52.0217 −0.295578
\(177\) −59.9664 + 16.0679i −0.338793 + 0.0907794i
\(178\) −69.7185 18.6810i −0.391677 0.104950i
\(179\) −185.470 + 107.081i −1.03615 + 0.598220i −0.918740 0.394864i \(-0.870792\pi\)
−0.117408 + 0.993084i \(0.537458\pi\)
\(180\) 29.2246 6.77647i 0.162359 0.0376471i
\(181\) −265.353 −1.46604 −0.733019 0.680208i \(-0.761890\pi\)
−0.733019 + 0.680208i \(0.761890\pi\)
\(182\) 4.40184 11.2565i 0.0241860 0.0618487i
\(183\) −133.651 + 133.651i −0.730331 + 0.730331i
\(184\) 36.9952 + 21.3592i 0.201061 + 0.116083i
\(185\) 167.154 89.0823i 0.903534 0.481526i
\(186\) −57.4717 99.5440i −0.308988 0.535183i
\(187\) −11.7404 + 3.14582i −0.0627828 + 0.0168226i
\(188\) 70.5329 70.5329i 0.375175 0.375175i
\(189\) 29.2923 + 21.5630i 0.154986 + 0.114090i
\(190\) −47.6993 1.62004i −0.251049 0.00852655i
\(191\) 2.14117 3.70861i 0.0112103 0.0194168i −0.860366 0.509677i \(-0.829765\pi\)
0.871576 + 0.490260i \(0.163098\pi\)
\(192\) 3.58630 13.3843i 0.0186787 0.0697097i
\(193\) −228.511 61.2292i −1.18399 0.317250i −0.387484 0.921877i \(-0.626656\pi\)
−0.796509 + 0.604627i \(0.793322\pi\)
\(194\) 144.697 + 83.5410i 0.745862 + 0.430624i
\(195\) −7.72608 + 7.21850i −0.0396209 + 0.0370180i
\(196\) 66.4798 72.0031i 0.339183 0.367363i
\(197\) 6.11514 + 6.11514i 0.0310413 + 0.0310413i 0.722457 0.691416i \(-0.243013\pi\)
−0.691416 + 0.722457i \(0.743013\pi\)
\(198\) 14.2809 + 53.2972i 0.0721260 + 0.269178i
\(199\) 214.306 123.729i 1.07691 0.621756i 0.146851 0.989159i \(-0.453086\pi\)
0.930062 + 0.367402i \(0.119753\pi\)
\(200\) −22.8933 + 66.9022i −0.114466 + 0.334511i
\(201\) −54.2277 + 93.9252i −0.269790 + 0.467289i
\(202\) −161.938 161.938i −0.801671 0.801671i
\(203\) 32.9345 + 216.695i 0.162239 + 1.06746i
\(204\) 3.23746i 0.0158699i
\(205\) −313.572 + 72.7096i −1.52962 + 0.354681i
\(206\) 59.2878 + 102.689i 0.287805 + 0.498492i
\(207\) 11.7270 43.7658i 0.0566523 0.211429i
\(208\) 1.26399 + 4.71729i 0.00607689 + 0.0226793i
\(209\) 87.7813i 0.420006i
\(210\) −79.6583 + 31.6947i −0.379325 + 0.150927i
\(211\) −299.419 −1.41905 −0.709524 0.704681i \(-0.751090\pi\)
−0.709524 + 0.704681i \(0.751090\pi\)
\(212\) −144.422 + 38.6978i −0.681236 + 0.182537i
\(213\) −125.103 33.5212i −0.587337 0.157376i
\(214\) −90.9654 + 52.5189i −0.425072 + 0.245415i
\(215\) 66.4317 106.539i 0.308985 0.495532i
\(216\) −14.6969 −0.0680414
\(217\) 205.119 + 256.562i 0.945249 + 1.18231i
\(218\) 123.464 123.464i 0.566347 0.566347i
\(219\) −124.623 71.9513i −0.569056 0.328545i
\(220\) −124.408 37.9053i −0.565490 0.172297i
\(221\) 0.570522 + 0.988172i 0.00258155 + 0.00447137i
\(222\) −89.6296 + 24.0162i −0.403737 + 0.108181i
\(223\) 151.041 151.041i 0.677313 0.677313i −0.282078 0.959391i \(-0.591024\pi\)
0.959391 + 0.282078i \(0.0910237\pi\)
\(224\) −4.38510 + 39.3544i −0.0195763 + 0.175689i
\(225\) 74.8272 + 5.08868i 0.332565 + 0.0226164i
\(226\) 41.6631 72.1626i 0.184350 0.319304i
\(227\) −14.8473 + 55.4109i −0.0654066 + 0.244101i −0.990887 0.134694i \(-0.956995\pi\)
0.925481 + 0.378795i \(0.123661\pi\)
\(228\) 22.5846 + 6.05152i 0.0990552 + 0.0265418i
\(229\) −85.5592 49.3976i −0.373621 0.215710i 0.301418 0.953492i \(-0.402540\pi\)
−0.675039 + 0.737782i \(0.735873\pi\)
\(230\) 72.9094 + 78.0360i 0.316997 + 0.339287i
\(231\) −63.2339 144.448i −0.273740 0.625316i
\(232\) −62.6239 62.6239i −0.269930 0.269930i
\(233\) 111.717 + 416.934i 0.479473 + 1.78942i 0.603754 + 0.797170i \(0.293671\pi\)
−0.124281 + 0.992247i \(0.539663\pi\)
\(234\) 4.48596 2.58997i 0.0191708 0.0110682i
\(235\) 220.070 117.283i 0.936468 0.499078i
\(236\) −35.8429 + 62.0818i −0.151877 + 0.263058i
\(237\) −118.705 118.705i −0.500867 0.500867i
\(238\) 1.39018 + 9.14677i 0.00584108 + 0.0384318i
\(239\) 344.565i 1.44169i −0.693094 0.720847i \(-0.743753\pi\)
0.693094 0.720847i \(-0.256247\pi\)
\(240\) 18.3288 29.3948i 0.0763702 0.122478i
\(241\) 50.1238 + 86.8170i 0.207983 + 0.360237i 0.951079 0.308948i \(-0.0999769\pi\)
−0.743096 + 0.669185i \(0.766644\pi\)
\(242\) 17.6209 65.7619i 0.0728135 0.271744i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 218.251i 0.894469i
\(245\) 211.448 123.752i 0.863054 0.505112i
\(246\) 157.694 0.641032
\(247\) −7.95994 + 2.13286i −0.0322265 + 0.00863506i
\(248\) −128.203 34.3518i −0.516947 0.138515i
\(249\) 67.6719 39.0704i 0.271775 0.156909i
\(250\) −103.496 + 143.313i −0.413985 + 0.573251i
\(251\) 404.247 1.61054 0.805272 0.592905i \(-0.202019\pi\)
0.805272 + 0.592905i \(0.202019\pi\)
\(252\) 41.5232 6.31092i 0.164774 0.0250433i
\(253\) −138.893 + 138.893i −0.548983 + 0.548983i
\(254\) −182.663 105.461i −0.719147 0.415200i
\(255\) 2.35895 7.74225i 0.00925080 0.0303618i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −33.7220 + 9.03579i −0.131214 + 0.0351587i −0.323828 0.946116i \(-0.604970\pi\)
0.192614 + 0.981275i \(0.438303\pi\)
\(258\) −43.4932 + 43.4932i −0.168578 + 0.168578i
\(259\) 242.917 106.340i 0.937905 0.410579i
\(260\) −0.414431 + 12.2022i −0.00159397 + 0.0469315i
\(261\) −46.9679 + 81.3508i −0.179954 + 0.311689i
\(262\) −76.7851 + 286.566i −0.293073 + 1.09376i
\(263\) 198.841 + 53.2792i 0.756049 + 0.202583i 0.616199 0.787590i \(-0.288672\pi\)
0.139849 + 0.990173i \(0.455338\pi\)
\(264\) 55.1773 + 31.8567i 0.209005 + 0.120669i
\(265\) −373.576 12.6880i −1.40972 0.0478793i
\(266\) −66.4066 7.39941i −0.249649 0.0278173i
\(267\) 62.5079 + 62.5079i 0.234112 + 0.234112i
\(268\) 32.4128 + 120.966i 0.120943 + 0.451367i
\(269\) 124.603 71.9393i 0.463206 0.267432i −0.250185 0.968198i \(-0.580491\pi\)
0.713392 + 0.700766i \(0.247158\pi\)
\(270\) −35.1471 10.7088i −0.130175 0.0396623i
\(271\) 95.3473 165.146i 0.351835 0.609396i −0.634736 0.772729i \(-0.718891\pi\)
0.986571 + 0.163333i \(0.0522245\pi\)
\(272\) −2.64337 2.64337i −0.00971829 0.00971829i
\(273\) −11.5620 + 9.24371i −0.0423517 + 0.0338597i
\(274\) 320.351i 1.16916i
\(275\) −269.897 181.298i −0.981443 0.659265i
\(276\) −26.1596 45.3097i −0.0947811 0.164166i
\(277\) −12.7471 + 47.5729i −0.0460185 + 0.171743i −0.985110 0.171923i \(-0.945002\pi\)
0.939092 + 0.343666i \(0.111669\pi\)
\(278\) 15.4249 + 57.5665i 0.0554852 + 0.207074i
\(279\) 140.776i 0.504575i
\(280\) −39.1621 + 90.9193i −0.139865 + 0.324712i
\(281\) −343.443 −1.22222 −0.611109 0.791546i \(-0.709276\pi\)
−0.611109 + 0.791546i \(0.709276\pi\)
\(282\) −118.004 + 31.6190i −0.418453 + 0.112124i
\(283\) 106.040 + 28.4135i 0.374701 + 0.100401i 0.441255 0.897382i \(-0.354534\pi\)
−0.0665533 + 0.997783i \(0.521200\pi\)
\(284\) −129.516 + 74.7760i −0.456042 + 0.263296i
\(285\) 49.6007 + 30.9281i 0.174038 + 0.108520i
\(286\) −22.4558 −0.0785167
\(287\) −445.531 + 67.7143i −1.55237 + 0.235938i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) 249.525 + 144.063i 0.863408 + 0.498489i
\(290\) −104.132 195.393i −0.359076 0.673769i
\(291\) −102.316 177.217i −0.351603 0.608994i
\(292\) −160.502 + 43.0065i −0.549666 + 0.147282i
\(293\) −24.9404 + 24.9404i −0.0851209 + 0.0851209i −0.748385 0.663264i \(-0.769171\pi\)
0.663264 + 0.748385i \(0.269171\pi\)
\(294\) −114.605 + 35.6604i −0.389813 + 0.121294i
\(295\) −130.952 + 122.349i −0.443906 + 0.414744i
\(296\) −53.5732 + 92.7914i −0.180990 + 0.313485i
\(297\) 17.4905 65.2755i 0.0588906 0.219783i
\(298\) 104.806 + 28.0826i 0.351697 + 0.0942370i
\(299\) 15.9694 + 9.21995i 0.0534094 + 0.0308360i
\(300\) 65.2510 56.9412i 0.217503 0.189804i
\(301\) 104.205 141.557i 0.346196 0.470290i
\(302\) −30.8785 30.8785i −0.102247 0.102247i
\(303\) 72.5946 + 270.927i 0.239586 + 0.894148i
\(304\) 23.3813 13.4992i 0.0769121 0.0444052i
\(305\) −159.027 + 521.937i −0.521399 + 1.71127i
\(306\) −1.98253 + 3.43384i −0.00647886 + 0.0112217i
\(307\) 311.194 + 311.194i 1.01366 + 1.01366i 0.999905 + 0.0137553i \(0.00437859\pi\)
0.0137553 + 0.999905i \(0.495621\pi\)
\(308\) −169.572 66.3110i −0.550557 0.215296i
\(309\) 145.225i 0.469983i
\(310\) −281.562 175.565i −0.908263 0.566339i
\(311\) −226.533 392.367i −0.728403 1.26163i −0.957558 0.288241i \(-0.906929\pi\)
0.229155 0.973390i \(-0.426404\pi\)
\(312\) 1.54807 5.77747i 0.00496176 0.0185175i
\(313\) −87.1378 325.203i −0.278396 1.03899i −0.953532 0.301293i \(-0.902582\pi\)
0.675136 0.737693i \(-0.264085\pi\)
\(314\) 91.0027i 0.289817i
\(315\) 103.899 + 15.1633i 0.329839 + 0.0481373i
\(316\) −193.845 −0.613434
\(317\) 489.707 131.216i 1.54482 0.413932i 0.616998 0.786965i \(-0.288349\pi\)
0.927818 + 0.373033i \(0.121682\pi\)
\(318\) 176.880 + 47.3949i 0.556227 + 0.149041i
\(319\) 352.667 203.613i 1.10554 0.638284i
\(320\) −9.03530 38.9662i −0.0282353 0.121769i
\(321\) 128.645 0.400762
\(322\) 93.3646 + 116.780i 0.289952 + 0.362671i
\(323\) 4.46043 4.46043i 0.0138094 0.0138094i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) −9.88215 + 28.8791i −0.0304066 + 0.0888587i
\(326\) 66.2560 + 114.759i 0.203239 + 0.352021i
\(327\) −206.559 + 55.3473i −0.631678 + 0.169258i
\(328\) 128.757 128.757i 0.392550 0.392550i
\(329\) 319.818 140.004i 0.972091 0.425545i
\(330\) 108.742 + 116.389i 0.329522 + 0.352692i
\(331\) 88.2204 152.802i 0.266527 0.461638i −0.701436 0.712733i \(-0.747457\pi\)
0.967963 + 0.251095i \(0.0807906\pi\)
\(332\) 23.3530 87.1547i 0.0703404 0.262514i
\(333\) 109.773 + 29.4137i 0.329650 + 0.0883294i
\(334\) 52.1762 + 30.1240i 0.156216 + 0.0901915i
\(335\) −10.6274 + 312.904i −0.0317234 + 0.934040i
\(336\) 28.7507 39.0564i 0.0855675 0.116239i
\(337\) 93.6762 + 93.6762i 0.277971 + 0.277971i 0.832299 0.554328i \(-0.187025\pi\)
−0.554328 + 0.832299i \(0.687025\pi\)
\(338\) −61.3127 228.822i −0.181398 0.676988i
\(339\) −88.3808 + 51.0267i −0.260710 + 0.150521i
\(340\) −4.39545 8.24760i −0.0129278 0.0242576i
\(341\) 305.143 528.523i 0.894847 1.54992i
\(342\) −20.2488 20.2488i −0.0592070 0.0592070i
\(343\) 308.480 149.963i 0.899360 0.437210i
\(344\) 71.0241i 0.206465i
\(345\) −29.5449 127.417i −0.0856375 0.369326i
\(346\) 41.7484 + 72.3103i 0.120660 + 0.208989i
\(347\) −124.014 + 462.828i −0.357390 + 1.33380i 0.520060 + 0.854130i \(0.325910\pi\)
−0.877450 + 0.479668i \(0.840757\pi\)
\(348\) 28.0735 + 104.772i 0.0806710 + 0.301068i
\(349\) 529.116i 1.51609i 0.652201 + 0.758046i \(0.273846\pi\)
−0.652201 + 0.758046i \(0.726154\pi\)
\(350\) −159.902 + 188.895i −0.456864 + 0.539699i
\(351\) −6.34410 −0.0180744
\(352\) 71.0630 19.0413i 0.201883 0.0540945i
\(353\) 159.138 + 42.6410i 0.450817 + 0.120796i 0.477082 0.878859i \(-0.341695\pi\)
−0.0262647 + 0.999655i \(0.508361\pi\)
\(354\) 76.0343 43.8984i 0.214786 0.124007i
\(355\) −364.217 + 84.4529i −1.02596 + 0.237896i
\(356\) 102.075 0.286727
\(357\) 4.12672 10.5529i 0.0115595 0.0295600i
\(358\) 214.163 214.163i 0.598220 0.598220i
\(359\) 308.088 + 177.875i 0.858184 + 0.495473i 0.863404 0.504513i \(-0.168328\pi\)
−0.00521959 + 0.999986i \(0.501661\pi\)
\(360\) −37.4412 + 19.9538i −0.104003 + 0.0554272i
\(361\) −157.721 273.182i −0.436902 0.756736i
\(362\) 362.479 97.1260i 1.00132 0.268304i
\(363\) −58.9605 + 58.9605i −0.162426 + 0.162426i
\(364\) −1.89288 + 16.9878i −0.00520022 + 0.0466698i
\(365\) −415.171 14.1007i −1.13746 0.0386322i
\(366\) 133.651 231.490i 0.365166 0.632485i
\(367\) 98.4715 367.501i 0.268315 1.00136i −0.691875 0.722017i \(-0.743215\pi\)
0.960190 0.279347i \(-0.0901181\pi\)
\(368\) −58.3544 15.6360i −0.158572 0.0424892i
\(369\) −167.260 96.5674i −0.453278 0.261700i
\(370\) −195.730 + 182.871i −0.529000 + 0.494247i
\(371\) −520.090 57.9515i −1.40186 0.156203i
\(372\) 114.943 + 114.943i 0.308988 + 0.308988i
\(373\) −86.7718 323.837i −0.232632 0.868195i −0.979202 0.202888i \(-0.934967\pi\)
0.746570 0.665307i \(-0.231699\pi\)
\(374\) 14.8862 8.59455i 0.0398027 0.0229801i
\(375\) 197.535 88.6279i 0.526760 0.236341i
\(376\) −70.5329 + 122.167i −0.187587 + 0.324911i
\(377\) −27.0323 27.0323i −0.0717038 0.0717038i
\(378\) −47.9066 18.7339i −0.126737 0.0495606i
\(379\) 674.043i 1.77848i 0.457443 + 0.889239i \(0.348765\pi\)
−0.457443 + 0.889239i \(0.651235\pi\)
\(380\) 65.7515 15.2461i 0.173030 0.0401214i
\(381\) 129.162 + 223.716i 0.339009 + 0.587181i
\(382\) −1.56744 + 5.84978i −0.00410326 + 0.0153136i
\(383\) 8.28295 + 30.9124i 0.0216265 + 0.0807112i 0.975896 0.218237i \(-0.0700307\pi\)
−0.954269 + 0.298949i \(0.903364\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −357.206 282.137i −0.927809 0.732824i
\(386\) 334.563 0.866743
\(387\) 72.7655 19.4975i 0.188025 0.0503811i
\(388\) −228.238 61.1563i −0.588243 0.157619i
\(389\) 486.253 280.738i 1.25001 0.721692i 0.278897 0.960321i \(-0.410031\pi\)
0.971111 + 0.238629i \(0.0766980\pi\)
\(390\) 7.91186 12.6886i 0.0202868 0.0325349i
\(391\) −14.1151 −0.0361000
\(392\) −64.4581 + 122.691i −0.164434 + 0.312988i
\(393\) 256.928 256.928i 0.653761 0.653761i
\(394\) −10.5917 6.11514i −0.0268826 0.0155207i
\(395\) −463.573 141.244i −1.17360 0.357580i
\(396\) −39.0163 67.5782i −0.0985259 0.170652i
\(397\) 436.584 116.982i 1.09971 0.294666i 0.337062 0.941483i \(-0.390567\pi\)
0.762645 + 0.646817i \(0.223900\pi\)
\(398\) −247.459 + 247.459i −0.621756 + 0.621756i
\(399\) 65.9036 + 48.5138i 0.165172 + 0.121589i
\(400\) 6.78491 99.7696i 0.0169623 0.249424i
\(401\) 77.9394 134.995i 0.194363 0.336646i −0.752329 0.658788i \(-0.771070\pi\)
0.946691 + 0.322142i \(0.104403\pi\)
\(402\) 39.6975 148.153i 0.0987499 0.368540i
\(403\) −55.3402 14.8284i −0.137321 0.0367950i
\(404\) 280.484 + 161.938i 0.694268 + 0.400836i
\(405\) 30.7214 + 32.8816i 0.0758552 + 0.0811890i
\(406\) −124.305 283.956i −0.306171 0.699399i
\(407\) −348.371 348.371i −0.855948 0.855948i
\(408\) 1.18499 + 4.42245i 0.00290439 + 0.0108393i
\(409\) −109.690 + 63.3296i −0.268191 + 0.154840i −0.628065 0.778161i \(-0.716153\pi\)
0.359874 + 0.933001i \(0.382820\pi\)
\(410\) 401.734 214.098i 0.979838 0.522191i
\(411\) −196.174 + 339.783i −0.477309 + 0.826723i
\(412\) −118.576 118.576i −0.287805 0.287805i
\(413\) −195.969 + 156.675i −0.474502 + 0.379359i
\(414\) 64.0776i 0.154777i
\(415\) 119.352 191.411i 0.287596 0.461231i
\(416\) −3.45329 5.98128i −0.00830118 0.0143781i
\(417\) 18.8916 70.5043i 0.0453035 0.169075i
\(418\) 32.1302 + 119.912i 0.0768665 + 0.286870i
\(419\) 768.293i 1.83363i 0.399307 + 0.916817i \(0.369251\pi\)
−0.399307 + 0.916817i \(0.630749\pi\)
\(420\) 97.2142 72.4527i 0.231462 0.172506i
\(421\) 557.422 1.32404 0.662021 0.749485i \(-0.269699\pi\)
0.662021 + 0.749485i \(0.269699\pi\)
\(422\) 409.014 109.595i 0.969228 0.259704i
\(423\) 144.525 + 38.7252i 0.341666 + 0.0915490i
\(424\) 183.120 105.724i 0.431886 0.249350i
\(425\) −4.50197 22.9265i −0.0105929 0.0539447i
\(426\) 183.163 0.429960
\(427\) −278.200 + 711.416i −0.651521 + 1.66608i
\(428\) 105.038 105.038i 0.245415 0.245415i
\(429\) 23.8179 + 13.7513i 0.0555197 + 0.0320543i
\(430\) −51.7512 + 169.851i −0.120352 + 0.395003i
\(431\) −60.4377 104.681i −0.140227 0.242880i 0.787355 0.616500i \(-0.211450\pi\)
−0.927582 + 0.373620i \(0.878116\pi\)
\(432\) 20.0764 5.37945i 0.0464731 0.0124524i
\(433\) 301.713 301.713i 0.696797 0.696797i −0.266921 0.963718i \(-0.586006\pi\)
0.963718 + 0.266921i \(0.0860063\pi\)
\(434\) −374.106 275.392i −0.861996 0.634543i
\(435\) −9.20460 + 271.013i −0.0211600 + 0.623018i
\(436\) −123.464 + 213.845i −0.283174 + 0.490471i
\(437\) 26.3842 98.4672i 0.0603758 0.225325i
\(438\) 196.574 + 52.6720i 0.448800 + 0.120256i
\(439\) −428.223 247.234i −0.975450 0.563176i −0.0745567 0.997217i \(-0.523754\pi\)
−0.900893 + 0.434040i \(0.857088\pi\)
\(440\) 183.818 + 6.24315i 0.417769 + 0.0141890i
\(441\) 143.395 + 32.3575i 0.325158 + 0.0733729i
\(442\) −1.14104 1.14104i −0.00258155 0.00258155i
\(443\) 120.879 + 451.126i 0.272864 + 1.01834i 0.957259 + 0.289231i \(0.0933997\pi\)
−0.684395 + 0.729111i \(0.739934\pi\)
\(444\) 113.646 65.6134i 0.255959 0.147778i
\(445\) 244.108 + 74.3763i 0.548558 + 0.167138i
\(446\) −151.041 + 261.610i −0.338657 + 0.586571i
\(447\) −93.9663 93.9663i −0.210215 0.210215i
\(448\) −8.41456 55.3642i −0.0187825 0.123581i
\(449\) 542.409i 1.20804i −0.796970 0.604019i \(-0.793565\pi\)
0.796970 0.604019i \(-0.206435\pi\)
\(450\) −104.078 + 20.4374i −0.231285 + 0.0454164i
\(451\) 418.633 + 725.094i 0.928233 + 1.60775i
\(452\) −30.4995 + 113.826i −0.0674768 + 0.251827i
\(453\) 13.8425 + 51.6608i 0.0305573 + 0.114041i
\(454\) 81.1271i 0.178694i
\(455\) −16.9048 + 39.2464i −0.0371534 + 0.0862558i
\(456\) −33.0661 −0.0725134
\(457\) 423.064 113.360i 0.925742 0.248052i 0.235704 0.971825i \(-0.424261\pi\)
0.690038 + 0.723773i \(0.257594\pi\)
\(458\) 134.957 + 36.1616i 0.294665 + 0.0789554i
\(459\) 4.20558 2.42809i 0.00916249 0.00528997i
\(460\) −128.159 79.9125i −0.278607 0.173723i
\(461\) 418.754 0.908360 0.454180 0.890910i \(-0.349932\pi\)
0.454180 + 0.890910i \(0.349932\pi\)
\(462\) 139.251 + 174.174i 0.301408 + 0.377001i
\(463\) 571.669 571.669i 1.23471 1.23471i 0.272572 0.962135i \(-0.412126\pi\)
0.962135 0.272572i \(-0.0878742\pi\)
\(464\) 108.468 + 62.6239i 0.233767 + 0.134965i
\(465\) 191.130 + 358.636i 0.411032 + 0.771259i
\(466\) −305.217 528.651i −0.654972 1.13445i
\(467\) −425.564 + 114.030i −0.911273 + 0.244175i −0.683851 0.729622i \(-0.739696\pi\)
−0.227422 + 0.973796i \(0.573030\pi\)
\(468\) −5.17994 + 5.17994i −0.0110682 + 0.0110682i
\(469\) −48.5395 + 435.622i −0.103496 + 0.928831i
\(470\) −257.692 + 240.763i −0.548282 + 0.512262i
\(471\) 55.7275 96.5229i 0.118317 0.204932i
\(472\) 26.2388 97.9247i 0.0555908 0.207468i
\(473\) −315.449 84.5243i −0.666911 0.178698i
\(474\) 205.604 + 118.705i 0.433763 + 0.250433i
\(475\) 168.351 + 11.4488i 0.354423 + 0.0241028i
\(476\) −5.24697 11.9859i −0.0110230 0.0251804i
\(477\) −158.586 158.586i −0.332466 0.332466i
\(478\) 126.120 + 470.684i 0.263848 + 0.984696i
\(479\) −418.951 + 241.882i −0.874638 + 0.504972i −0.868887 0.495011i \(-0.835164\pi\)
−0.00575111 + 0.999983i \(0.501831\pi\)
\(480\) −14.2784 + 46.8628i −0.0297467 + 0.0976309i
\(481\) −23.1255 + 40.0545i −0.0480779 + 0.0832734i
\(482\) −100.248 100.248i −0.207983 0.207983i
\(483\) −27.5152 181.038i −0.0569672 0.374820i
\(484\) 96.2822i 0.198930i
\(485\) −501.262 312.557i −1.03353 0.644448i
\(486\) −11.0227 19.0919i −0.0226805 0.0392837i
\(487\) 154.195 575.465i 0.316623 1.18165i −0.605846 0.795582i \(-0.707165\pi\)
0.922469 0.386071i \(-0.126168\pi\)
\(488\) −79.8852 298.136i −0.163699 0.610934i
\(489\) 162.293i 0.331888i
\(490\) −243.547 + 246.444i −0.497035 + 0.502947i
\(491\) −493.037 −1.00415 −0.502074 0.864824i \(-0.667430\pi\)
−0.502074 + 0.864824i \(0.667430\pi\)
\(492\) −215.414 + 57.7200i −0.437833 + 0.117317i
\(493\) 28.2662 + 7.57390i 0.0573351 + 0.0153629i
\(494\) 10.0928 5.82708i 0.0204308 0.0117957i
\(495\) −44.0655 190.039i −0.0890211 0.383918i
\(496\) 187.702 0.378431
\(497\) −517.489 + 78.6509i −1.04123 + 0.158251i
\(498\) −78.1407 + 78.1407i −0.156909 + 0.156909i
\(499\) −327.714 189.206i −0.656741 0.379170i 0.134293 0.990942i \(-0.457124\pi\)
−0.791034 + 0.611772i \(0.790457\pi\)
\(500\) 88.9223 233.651i 0.177845 0.467302i
\(501\) −36.8942 63.9026i −0.0736410 0.127550i
\(502\) −552.211 + 147.965i −1.10002 + 0.294750i
\(503\) −458.146 + 458.146i −0.910826 + 0.910826i −0.996337 0.0855108i \(-0.972748\pi\)
0.0855108 + 0.996337i \(0.472748\pi\)
\(504\) −54.4117 + 23.8194i −0.107960 + 0.0472607i
\(505\) 552.772 + 591.640i 1.09460 + 1.17156i
\(506\) 138.893 240.569i 0.274492 0.475434i
\(507\) −75.0924 + 280.249i −0.148111 + 0.552759i
\(508\) 288.124 + 77.2026i 0.567173 + 0.151974i
\(509\) −602.762 348.005i −1.18421 0.683703i −0.227224 0.973843i \(-0.572965\pi\)
−0.956984 + 0.290140i \(0.906298\pi\)
\(510\) −0.388529 + 11.4396i −0.000761822 + 0.0224305i
\(511\) −577.998 64.4039i −1.13111 0.126035i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 9.07728 + 33.8769i 0.0176945 + 0.0660368i
\(514\) 42.7578 24.6862i 0.0831864 0.0480277i
\(515\) −197.169 369.968i −0.382853 0.718384i
\(516\) 43.4932 75.3324i 0.0842892 0.145993i
\(517\) −458.655 458.655i −0.887147 0.887147i
\(518\) −292.908 + 234.177i −0.565460 + 0.452079i
\(519\) 102.262i 0.197037i
\(520\) −3.90019 16.8202i −0.00750037 0.0323465i
\(521\) −46.9311 81.2870i −0.0900788 0.156021i 0.817465 0.575978i \(-0.195379\pi\)
−0.907544 + 0.419957i \(0.862045\pi\)
\(522\) 34.3829 128.319i 0.0658676 0.245821i
\(523\) 186.678 + 696.690i 0.356936 + 1.33210i 0.878030 + 0.478605i \(0.158857\pi\)
−0.521094 + 0.853499i \(0.674476\pi\)
\(524\) 419.562i 0.800690i
\(525\) 285.276 102.433i 0.543383 0.195111i
\(526\) −291.123 −0.553466
\(527\) 42.3610 11.3506i 0.0803814 0.0215381i
\(528\) −87.0340 23.3207i −0.164837 0.0441680i
\(529\) 260.580 150.446i 0.492590 0.284397i
\(530\) 514.959 119.406i 0.971621 0.225295i
\(531\) −107.529 −0.202502
\(532\) 93.4215 14.1987i 0.175604 0.0266893i
\(533\) 55.5792 55.5792i 0.104276 0.104276i
\(534\) −108.267 62.5079i −0.202747 0.117056i
\(535\) 327.729 174.659i 0.612577 0.326465i
\(536\) −88.5535 153.379i −0.165212 0.286155i
\(537\) −358.301 + 96.0065i −0.667228 + 0.178783i
\(538\) −143.879 + 143.879i −0.267432 + 0.267432i
\(539\) −468.215 432.299i −0.868674 0.802039i
\(540\) 51.9316 + 1.76379i 0.0961696 + 0.00326627i
\(541\) −501.633 + 868.854i −0.927233 + 1.60601i −0.139303 + 0.990250i \(0.544486\pi\)
−0.787930 + 0.615765i \(0.788847\pi\)
\(542\) −69.7990 + 260.494i −0.128781 + 0.480615i
\(543\) −443.944 118.955i −0.817577 0.219069i
\(544\) 4.57846 + 2.64337i 0.00841628 + 0.00485914i
\(545\) −451.076 + 421.442i −0.827662 + 0.773287i
\(546\) 12.4106 16.8591i 0.0227300 0.0308775i
\(547\) −188.091 188.091i −0.343860 0.343860i 0.513957 0.857816i \(-0.328179\pi\)
−0.857816 + 0.513957i \(0.828179\pi\)
\(548\) 117.257 + 437.607i 0.213972 + 0.798553i
\(549\) −283.516 + 163.688i −0.516422 + 0.298156i
\(550\) 435.045 + 148.868i 0.790992 + 0.270670i
\(551\) −105.671 + 183.028i −0.191781 + 0.332175i
\(552\) 52.3192 + 52.3192i 0.0947811 + 0.0947811i
\(553\) −631.864 247.091i −1.14261 0.446818i
\(554\) 69.6516i 0.125725i
\(555\) 319.588 74.1046i 0.575835 0.133522i
\(556\) −42.1416 72.9914i −0.0757942 0.131279i
\(557\) −143.524 + 535.638i −0.257673 + 0.961648i 0.708911 + 0.705298i \(0.249187\pi\)
−0.966584 + 0.256350i \(0.917480\pi\)
\(558\) −51.5278 192.304i −0.0923437 0.344631i
\(559\) 30.6584i 0.0548450i
\(560\) 20.2177 138.532i 0.0361030 0.247379i
\(561\) −21.0523 −0.0375263
\(562\) 469.152 125.709i 0.834791 0.223681i
\(563\) 571.577 + 153.153i 1.01523 + 0.272031i 0.727815 0.685774i \(-0.240536\pi\)
0.287419 + 0.957805i \(0.407203\pi\)
\(564\) 149.623 86.3848i 0.265289 0.153165i
\(565\) −155.877 + 249.986i −0.275888 + 0.442454i
\(566\) −155.254 −0.274300
\(567\) 39.3405 + 49.2070i 0.0693836 + 0.0867848i
\(568\) 149.552 149.552i 0.263296 0.263296i
\(569\) 337.893 + 195.083i 0.593837 + 0.342852i 0.766613 0.642109i \(-0.221940\pi\)
−0.172776 + 0.984961i \(0.555274\pi\)
\(570\) −79.0763 24.0934i −0.138730 0.0422691i
\(571\) 5.20468 + 9.01477i 0.00911502 + 0.0157877i 0.870547 0.492085i \(-0.163765\pi\)
−0.861432 + 0.507873i \(0.830432\pi\)
\(572\) 30.6752 8.21938i 0.0536279 0.0143695i
\(573\) 5.24477 5.24477i 0.00915318 0.00915318i
\(574\) 583.822 255.575i 1.01711 0.445253i
\(575\) −248.260 284.490i −0.431756 0.494765i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) 154.184 575.421i 0.267216 0.997263i −0.693664 0.720299i \(-0.744005\pi\)
0.960880 0.276965i \(-0.0893285\pi\)
\(578\) −393.588 105.462i −0.680948 0.182460i
\(579\) −354.857 204.877i −0.612880 0.353846i
\(580\) 213.766 + 228.797i 0.368562 + 0.394477i
\(581\) 187.217 254.324i 0.322232 0.437736i
\(582\) 204.633 + 204.633i 0.351603 + 0.351603i
\(583\) 251.640 + 939.135i 0.431630 + 1.61087i
\(584\) 203.509 117.496i 0.348474 0.201192i
\(585\) −16.1619 + 8.61329i −0.0276273 + 0.0147236i
\(586\) 24.9404 43.1981i 0.0425605 0.0737169i
\(587\) −57.7749 57.7749i −0.0984239 0.0984239i 0.656180 0.754604i \(-0.272171\pi\)
−0.754604 + 0.656180i \(0.772171\pi\)
\(588\) 143.501 90.6614i 0.244049 0.154186i
\(589\) 316.728i 0.537739i
\(590\) 134.101 215.064i 0.227290 0.364516i
\(591\) 7.48949 + 12.9722i 0.0126726 + 0.0219495i
\(592\) 39.2183 146.365i 0.0662471 0.247237i
\(593\) −241.650 901.848i −0.407503 1.52082i −0.799392 0.600810i \(-0.794845\pi\)
0.391888 0.920013i \(-0.371822\pi\)
\(594\) 95.5700i 0.160892i
\(595\) −3.81448 32.4869i −0.00641089 0.0545999i
\(596\) −153.446 −0.257460
\(597\) 414.007 110.933i 0.693479 0.185817i
\(598\) −25.1894 6.74947i −0.0421227 0.0112867i
\(599\) 811.636 468.598i 1.35498 0.782301i 0.366042 0.930598i \(-0.380713\pi\)
0.988943 + 0.148297i \(0.0473793\pi\)
\(600\) −68.2926 + 101.667i −0.113821 + 0.169445i
\(601\) 89.1175 0.148282 0.0741410 0.997248i \(-0.476379\pi\)
0.0741410 + 0.997248i \(0.476379\pi\)
\(602\) −90.5330 + 231.512i −0.150387 + 0.384572i
\(603\) −132.830 + 132.830i −0.220282 + 0.220282i
\(604\) 53.4832 + 30.8785i 0.0885483 + 0.0511234i
\(605\) −70.1554 + 230.255i −0.115959 + 0.380587i
\(606\) −198.332 343.521i −0.327281 0.566867i
\(607\) −802.135 + 214.931i −1.32147 + 0.354088i −0.849530 0.527540i \(-0.823114\pi\)
−0.471945 + 0.881628i \(0.656448\pi\)
\(608\) −26.9984 + 26.9984i −0.0444052 + 0.0444052i
\(609\) −42.0412 + 377.302i −0.0690332 + 0.619544i
\(610\) 26.1923 771.187i 0.0429383 1.26424i
\(611\) −30.4463 + 52.7346i −0.0498303 + 0.0863087i
\(612\) 1.45131 5.41637i 0.00237143 0.00885029i
\(613\) −970.204 259.965i −1.58271 0.424087i −0.642949 0.765909i \(-0.722289\pi\)
−0.939765 + 0.341822i \(0.888956\pi\)
\(614\) −539.004 311.194i −0.877856 0.506830i
\(615\) −557.211 18.9249i −0.906034 0.0307722i
\(616\) 255.911 + 28.5151i 0.415439 + 0.0462907i
\(617\) 92.1769 + 92.1769i 0.149395 + 0.149395i 0.777848 0.628453i \(-0.216311\pi\)
−0.628453 + 0.777848i \(0.716311\pi\)
\(618\) 53.1560 + 198.381i 0.0860129 + 0.321004i
\(619\) −420.450 + 242.747i −0.679241 + 0.392160i −0.799569 0.600574i \(-0.794939\pi\)
0.120328 + 0.992734i \(0.461605\pi\)
\(620\) 448.882 + 136.768i 0.724003 + 0.220593i
\(621\) 39.2394 67.9646i 0.0631874 0.109444i
\(622\) 453.067 + 453.067i 0.728403 + 0.728403i
\(623\) 332.727 + 130.113i 0.534072 + 0.208849i
\(624\) 8.45881i 0.0135558i
\(625\) 382.902 493.975i 0.612644 0.790359i
\(626\) 238.065 + 412.341i 0.380295 + 0.658691i
\(627\) 39.3513 146.861i 0.0627612 0.234228i
\(628\) −33.3093 124.312i −0.0530403 0.197949i
\(629\) 35.4035i 0.0562853i
\(630\) −147.479 + 17.3164i −0.234094 + 0.0274863i
\(631\) 204.708 0.324418 0.162209 0.986756i \(-0.448138\pi\)
0.162209 + 0.986756i \(0.448138\pi\)
\(632\) 264.797 70.9523i 0.418983 0.112266i
\(633\) −500.938 134.226i −0.791372 0.212047i
\(634\) −620.923 + 358.490i −0.979374 + 0.565442i
\(635\) 632.784 + 394.566i 0.996510 + 0.621364i
\(636\) −258.971 −0.407186
\(637\) −27.8241 + 52.9611i −0.0436799 + 0.0831415i
\(638\) −407.225 + 407.225i −0.638284 + 0.638284i
\(639\) −194.274 112.164i −0.304028 0.175531i
\(640\) 26.6051 + 49.9216i 0.0415704 + 0.0780026i
\(641\) 587.986 + 1018.42i 0.917295 + 1.58880i 0.803506 + 0.595296i \(0.202965\pi\)
0.113788 + 0.993505i \(0.463701\pi\)
\(642\) −175.732 + 47.0872i −0.273725 + 0.0733445i
\(643\) 395.839 395.839i 0.615612 0.615612i −0.328791 0.944403i \(-0.606641\pi\)
0.944403 + 0.328791i \(0.106641\pi\)
\(644\) −170.283 125.351i −0.264415 0.194644i
\(645\) 158.903 148.463i 0.246361 0.230176i
\(646\) −4.46043 + 7.72569i −0.00690468 + 0.0119593i
\(647\) 119.378 445.523i 0.184509 0.688598i −0.810226 0.586118i \(-0.800656\pi\)
0.994735 0.102480i \(-0.0326778\pi\)
\(648\) −24.5885 6.58846i −0.0379452 0.0101674i
\(649\) 403.700 + 233.076i 0.622034 + 0.359131i
\(650\) 2.92878 43.0667i 0.00450582 0.0662564i
\(651\) 228.157 + 521.189i 0.350472 + 0.800598i
\(652\) −132.512 132.512i −0.203239 0.203239i
\(653\) −64.9876 242.537i −0.0995215 0.371419i 0.898145 0.439700i \(-0.144915\pi\)
−0.997666 + 0.0682808i \(0.978249\pi\)
\(654\) 261.906 151.212i 0.400468 0.231210i
\(655\) 305.711 1003.36i 0.466734 1.53185i
\(656\) −128.757 + 223.013i −0.196275 + 0.339959i
\(657\) −176.244 176.244i −0.268255 0.268255i
\(658\) −385.634 + 308.311i −0.586071 + 0.468558i
\(659\) 524.406i 0.795760i 0.917437 + 0.397880i \(0.130254\pi\)
−0.917437 + 0.397880i \(0.869746\pi\)
\(660\) −191.146 119.187i −0.289615 0.180587i
\(661\) 148.475 + 257.165i 0.224621 + 0.389055i 0.956206 0.292696i \(-0.0945522\pi\)
−0.731585 + 0.681751i \(0.761219\pi\)
\(662\) −64.5818 + 241.023i −0.0975556 + 0.364082i
\(663\) 0.511516 + 1.90900i 0.000771517 + 0.00287934i
\(664\) 127.603i 0.192174i
\(665\) 233.760 + 34.1153i 0.351518 + 0.0513012i
\(666\) −160.719 −0.241321
\(667\) 456.798 122.399i 0.684854 0.183506i
\(668\) −82.3002 22.0523i −0.123204 0.0330124i
\(669\) 320.406 184.987i 0.478933 0.276512i
\(670\) −100.013 431.324i −0.149274 0.643767i
\(671\) 1419.22 2.11508
\(672\) −24.9785 + 63.8755i −0.0371704 + 0.0950528i
\(673\) −41.9638 + 41.9638i −0.0623533 + 0.0623533i −0.737596 0.675243i \(-0.764039\pi\)
0.675243 + 0.737596i \(0.264039\pi\)
\(674\) −162.252 93.6762i −0.240730 0.138985i
\(675\) 122.907 + 42.0576i 0.182085 + 0.0623076i
\(676\) 167.509 + 290.135i 0.247795 + 0.429193i
\(677\) 952.520 255.227i 1.40697 0.376997i 0.526129 0.850405i \(-0.323643\pi\)
0.880843 + 0.473408i \(0.156976\pi\)
\(678\) 102.053 102.053i 0.150521 0.150521i
\(679\) −666.018 490.278i −0.980880 0.722058i
\(680\) 9.02312 + 9.65759i 0.0132693 + 0.0142023i
\(681\) −49.6800 + 86.0483i −0.0729516 + 0.126356i
\(682\) −223.380 + 833.666i −0.327537 + 1.22238i
\(683\) −399.787 107.123i −0.585339 0.156841i −0.0460170 0.998941i \(-0.514653\pi\)
−0.539322 + 0.842099i \(0.681320\pi\)
\(684\) 35.0719 + 20.2488i 0.0512747 + 0.0296035i
\(685\) −38.4454 + 1131.96i −0.0561247 + 1.65249i
\(686\) −366.502 + 317.765i −0.534259 + 0.463214i
\(687\) −120.999 120.999i −0.176127 0.176127i
\(688\) −25.9966 97.0207i −0.0377858 0.141019i
\(689\) 79.0458 45.6371i 0.114725 0.0662367i
\(690\) 86.9971 + 163.241i 0.126083 + 0.236581i
\(691\) 455.346 788.682i 0.658966 1.14136i −0.321917 0.946768i \(-0.604327\pi\)
0.980884 0.194595i \(-0.0623393\pi\)
\(692\) −83.4967 83.4967i −0.120660 0.120660i
\(693\) −41.0381 270.013i −0.0592180 0.389629i
\(694\) 677.627i 0.976408i
\(695\) −47.5952 205.262i −0.0684824 0.295341i
\(696\) −76.6983 132.845i −0.110199 0.190870i
\(697\) −15.5722 + 58.1161i −0.0223417 + 0.0833804i
\(698\) −193.670 722.786i −0.277464 1.03551i
\(699\) 747.626i 1.06957i
\(700\) 149.291 316.563i 0.213272 0.452233i
\(701\) 295.328 0.421296 0.210648 0.977562i \(-0.432443\pi\)
0.210648 + 0.977562i \(0.432443\pi\)
\(702\) 8.66621 2.32210i 0.0123450 0.00330784i
\(703\) 246.975 + 66.1769i 0.351316 + 0.0941349i
\(704\) −90.1042 + 52.0217i −0.127989 + 0.0738945i
\(705\) 420.761 97.5640i 0.596824 0.138389i
\(706\) −232.995 −0.330021
\(707\) 707.856 + 885.384i 1.00121 + 1.25231i
\(708\) −87.7969 + 87.7969i −0.124007 + 0.124007i
\(709\) −754.639 435.691i −1.06437 0.614515i −0.137733 0.990469i \(-0.543981\pi\)
−0.926638 + 0.375955i \(0.877315\pi\)
\(710\) 466.618 248.677i 0.657208 0.350250i
\(711\) −145.384 251.812i −0.204478 0.354166i
\(712\) −139.437 + 37.3620i −0.195838 + 0.0524748i
\(713\) 501.146 501.146i 0.702869 0.702869i
\(714\) −1.77457 + 15.9260i −0.00248540 + 0.0223054i
\(715\) 79.3474 + 2.69493i 0.110975 + 0.00376913i
\(716\) −214.163 + 370.941i −0.299110 + 0.518074i
\(717\) 154.464 576.468i 0.215431 0.804001i
\(718\) −485.963 130.213i −0.676829 0.181356i
\(719\) 783.472 + 452.338i 1.08967 + 0.629121i 0.933488 0.358607i \(-0.116748\pi\)
0.156181 + 0.987728i \(0.450082\pi\)
\(720\) 43.8421 40.9618i 0.0608918 0.0568914i
\(721\) −235.367 537.658i −0.326445 0.745712i
\(722\) 315.443 + 315.443i 0.436902 + 0.436902i
\(723\) 44.9398 + 167.718i 0.0621574 + 0.231975i
\(724\) −459.605 + 265.353i −0.634813 + 0.366510i
\(725\) 344.501 + 702.917i 0.475173 + 0.969541i
\(726\) 58.9605 102.123i 0.0812129 0.140665i
\(727\) −155.082 155.082i −0.213318 0.213318i 0.592357 0.805675i \(-0.298197\pi\)
−0.805675 + 0.592357i \(0.798197\pi\)
\(728\) −3.63224 23.8986i −0.00498934 0.0328277i
\(729\) 27.0000i 0.0370370i
\(730\) 572.296 132.701i 0.783967 0.181783i
\(731\) −11.7340 20.3238i −0.0160519 0.0278027i
\(732\) −97.8390 + 365.140i −0.133660 + 0.498825i
\(733\) 79.7853 + 297.763i 0.108848 + 0.406225i 0.998753 0.0499198i \(-0.0158966\pi\)
−0.889906 + 0.456145i \(0.849230\pi\)
\(734\) 538.058i 0.733049i
\(735\) 409.236 112.252i 0.556784 0.152724i
\(736\) 85.4368 0.116083
\(737\) 786.609 210.771i 1.06731 0.285986i
\(738\) 263.827 + 70.6922i 0.357489 + 0.0957889i
\(739\) −204.986 + 118.349i −0.277383 + 0.160147i −0.632238 0.774774i \(-0.717864\pi\)
0.354855 + 0.934921i \(0.384530\pi\)
\(740\) 200.437 321.449i 0.270860 0.434390i
\(741\) −14.2734 −0.0192623
\(742\) 731.668 111.203i 0.986075 0.149869i
\(743\) 605.403 605.403i 0.814809 0.814809i −0.170541 0.985351i \(-0.554552\pi\)
0.985351 + 0.170541i \(0.0545516\pi\)
\(744\) −199.088 114.943i −0.267591 0.154494i
\(745\) −366.961 111.808i −0.492565 0.150077i
\(746\) 237.065 + 410.609i 0.317781 + 0.550414i
\(747\) 130.732 35.0295i 0.175009 0.0468936i
\(748\) −17.1891 + 17.1891i −0.0229801 + 0.0229801i
\(749\) 476.274 208.495i 0.635880 0.278364i
\(750\) −237.398 + 193.371i −0.316530 + 0.257828i
\(751\) −426.169 + 738.147i −0.567469 + 0.982886i 0.429346 + 0.903140i \(0.358744\pi\)
−0.996815 + 0.0797456i \(0.974589\pi\)
\(752\) 51.6337 192.699i 0.0686618 0.256249i
\(753\) 676.318 + 181.219i 0.898164 + 0.240662i
\(754\) 46.8214 + 27.0323i 0.0620973 + 0.0358519i
\(755\) 105.403 + 112.815i 0.139607 + 0.149424i
\(756\) 72.2987 + 8.05595i 0.0956332 + 0.0106560i
\(757\) −61.7687 61.7687i −0.0815967 0.0815967i 0.665130 0.746727i \(-0.268376\pi\)
−0.746727 + 0.665130i \(0.768376\pi\)
\(758\) −246.717 920.760i −0.325484 1.21472i
\(759\) −294.636 + 170.108i −0.388190 + 0.224122i
\(760\) −84.2377 + 44.8933i −0.110839 + 0.0590702i
\(761\) 46.4211 80.4037i 0.0610002 0.105655i −0.833913 0.551897i \(-0.813904\pi\)
0.894913 + 0.446241i \(0.147238\pi\)
\(762\) −258.325 258.325i −0.339009 0.339009i
\(763\) −675.031 + 539.680i −0.884706 + 0.707314i