Properties

Label 208.3.o
Level $208$
Weight $3$
Character orbit 208.o
Rep. character $\chi_{208}(51,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $108$
Newform subspaces $1$
Sturm bound $84$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 208.o (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 208 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(84\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(208, [\chi])\).

Total New Old
Modular forms 116 116 0
Cusp forms 108 108 0
Eisenstein series 8 8 0

Trace form

\( 108 q - 4 q^{3} - 4 q^{4} - 4 q^{10} - 88 q^{12} - 2 q^{13} + 28 q^{14} - 4 q^{16} - 8 q^{17} - 36 q^{22} - 8 q^{23} - 4 q^{26} - 64 q^{27} - 4 q^{29} + 52 q^{30} + 96 q^{35} + 192 q^{36} - 144 q^{38} + 188 q^{39}+ \cdots + 100 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(208, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
208.3.o.a 208.o 208.o $108$ $5.668$ None 208.3.o.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$