Defining parameters
| Level: | \( N \) | \(=\) | \( 208 = 2^{4} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 208.o (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 208 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(84\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(208, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 116 | 116 | 0 |
| Cusp forms | 108 | 108 | 0 |
| Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(208, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 208.3.o.a | $108$ | $5.668$ | None | \(0\) | \(-4\) | \(0\) | \(0\) | ||