Properties

Label 205.2.k
Level $205$
Weight $2$
Character orbit 205.k
Rep. character $\chi_{205}(16,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $56$
Newform subspaces $2$
Sturm bound $42$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 205 = 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 205.k (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 41 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 2 \)
Sturm bound: \(42\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(205, [\chi])\).

Total New Old
Modular forms 88 56 32
Cusp forms 72 56 16
Eisenstein series 16 0 16

Trace form

\( 56 q - 2 q^{2} - 4 q^{3} - 14 q^{4} - 2 q^{5} - 10 q^{6} + 12 q^{8} + 40 q^{9} - 2 q^{10} - 2 q^{11} - 24 q^{12} - 4 q^{13} + 12 q^{14} - 14 q^{16} - 6 q^{17} - 22 q^{18} + 14 q^{19} - 6 q^{20} - 28 q^{21}+ \cdots - 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(205, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
205.2.k.a 205.k 41.d $24$ $1.637$ None 205.2.k.a \(0\) \(-2\) \(6\) \(-1\) $\mathrm{SU}(2)[C_{5}]$
205.2.k.b 205.k 41.d $32$ $1.637$ None 205.2.k.b \(-2\) \(-2\) \(-8\) \(1\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{2}^{\mathrm{old}}(205, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(205, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(41, [\chi])\)\(^{\oplus 2}\)