Defining parameters
Level: | \( N \) | \(=\) | \( 205 = 5 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 205.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 205 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(42\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(205, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 44 | 0 |
Cusp forms | 36 | 36 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(205, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
205.2.j.a | $4$ | $1.637$ | \(\Q(i, \sqrt{5})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{2}+(-\beta _{2}-\beta _{3})q^{3}+3q^{4}+\beta _{3}q^{5}+\cdots\) |
205.2.j.b | $8$ | $1.637$ | 8.0.309760000.3 | None | \(-4\) | \(2\) | \(-4\) | \(-12\) | \(q+(-1+\beta _{2})q^{2}+(\beta _{2}-\beta _{5})q^{3}-\beta _{2}q^{4}+\cdots\) |
205.2.j.c | $8$ | $1.637$ | 8.0.309760000.3 | None | \(4\) | \(-2\) | \(4\) | \(12\) | \(q+(1-\beta _{2})q^{2}+(-\beta _{2}+\beta _{5})q^{3}-\beta _{2}q^{4}+\cdots\) |
205.2.j.d | $16$ | $1.637$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{2}-\beta _{9}q^{3}+(1+\beta _{5}+\beta _{9}+2\beta _{11}+\cdots)q^{4}+\cdots\) |