Properties

Label 205.2.j
Level $205$
Weight $2$
Character orbit 205.j
Rep. character $\chi_{205}(9,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $36$
Newform subspaces $4$
Sturm bound $42$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 205 = 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 205.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 205 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(42\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(205, [\chi])\).

Total New Old
Modular forms 44 44 0
Cusp forms 36 36 0
Eisenstein series 8 8 0

Trace form

\( 36 q + 20 q^{4} - 8 q^{6} + 4 q^{10} - 24 q^{14} - 18 q^{15} - 12 q^{16} + 8 q^{19} - 28 q^{24} + 20 q^{25} - 4 q^{26} - 36 q^{29} + 14 q^{30} + 24 q^{31} + 8 q^{34} - 18 q^{35} - 16 q^{40} + 20 q^{41}+ \cdots + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(205, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
205.2.j.a 205.j 205.j $4$ $1.637$ \(\Q(i, \sqrt{5})\) None 205.2.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{3}q^{2}+(-\beta _{2}-\beta _{3})q^{3}+3q^{4}+\beta _{3}q^{5}+\cdots\)
205.2.j.b 205.j 205.j $8$ $1.637$ 8.0.309760000.3 None 205.2.j.b \(-4\) \(2\) \(-4\) \(-12\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1+\beta _{2})q^{2}+(\beta _{2}-\beta _{5})q^{3}-\beta _{2}q^{4}+\cdots\)
205.2.j.c 205.j 205.j $8$ $1.637$ 8.0.309760000.3 None 205.2.j.b \(4\) \(-2\) \(4\) \(12\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\beta _{2})q^{2}+(-\beta _{2}+\beta _{5})q^{3}-\beta _{2}q^{4}+\cdots\)
205.2.j.d 205.j 205.j $16$ $1.637$ 16.0.\(\cdots\).1 None 205.2.j.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{3}q^{2}-\beta _{9}q^{3}+(1+\beta _{5}+\beta _{9}+2\beta _{11}+\cdots)q^{4}+\cdots\)