Properties

Label 204.2.p
Level $204$
Weight $2$
Character orbit 204.p
Rep. character $\chi_{204}(59,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $128$
Newform subspaces $1$
Sturm bound $72$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 204 = 2^{2} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 204.p (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 204 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 1 \)
Sturm bound: \(72\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(204, [\chi])\).

Total New Old
Modular forms 160 160 0
Cusp forms 128 128 0
Eisenstein series 32 32 0

Trace form

\( 128 q - 4 q^{6} - 16 q^{9} - 8 q^{10} - 16 q^{12} - 16 q^{16} - 8 q^{18} + 16 q^{22} - 24 q^{24} - 16 q^{25} - 64 q^{28} - 16 q^{33} - 64 q^{34} + 12 q^{36} - 16 q^{37} - 40 q^{40} - 32 q^{42} - 8 q^{45}+ \cdots - 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(204, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
204.2.p.a 204.p 204.p $128$ $1.629$ None 204.2.p.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$