Properties

Label 20339.2.a
Level $20339$
Weight $2$
Character orbit 20339.a
Rep. character $\chi_{20339}(1,\cdot)$
Character field $\Q$
Dimension $1504$
Newform subspaces $32$
Sturm bound $3784$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 20339 = 11 \cdot 43^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 20339.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 32 \)
Sturm bound: \(3784\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(20339))\).

Total New Old
Modular forms 1936 1504 432
Cusp forms 1849 1504 345
Eisenstein series 87 0 87

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)\(43\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(462\)\(359\)\(103\)\(441\)\(359\)\(82\)\(21\)\(0\)\(21\)
\(+\)\(-\)\(-\)\(506\)\(392\)\(114\)\(484\)\(392\)\(92\)\(22\)\(0\)\(22\)
\(-\)\(+\)\(-\)\(506\)\(403\)\(103\)\(484\)\(403\)\(81\)\(22\)\(0\)\(22\)
\(-\)\(-\)\(+\)\(462\)\(350\)\(112\)\(440\)\(350\)\(90\)\(22\)\(0\)\(22\)
Plus space\(+\)\(924\)\(709\)\(215\)\(881\)\(709\)\(172\)\(43\)\(0\)\(43\)
Minus space\(-\)\(1012\)\(795\)\(217\)\(968\)\(795\)\(173\)\(44\)\(0\)\(44\)

Trace form

\( 1504 q + q^{2} - q^{3} + 1507 q^{4} + 3 q^{5} + 6 q^{6} - 6 q^{7} + 15 q^{8} + 1501 q^{9} + 16 q^{10} + 2 q^{11} + 14 q^{12} - 2 q^{13} + 12 q^{14} + 23 q^{15} + 1509 q^{16} + 16 q^{17} + 15 q^{18} - 4 q^{20}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(20339))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11 43
20339.2.a.a 20339.a 1.a $1$ $162.408$ \(\Q\) None \(-1\) \(-1\) \(1\) \(3\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}-q^{4}+q^{5}+q^{6}+3q^{7}+\cdots\)
20339.2.a.b 20339.a 1.a $1$ $162.408$ \(\Q\) None \(-1\) \(1\) \(-3\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}-q^{4}-3q^{5}-q^{6}+q^{7}+\cdots\)
20339.2.a.c 20339.a 1.a $1$ $162.408$ \(\Q\) None \(1\) \(-1\) \(3\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}+3q^{5}-q^{6}-q^{7}+\cdots\)
20339.2.a.d 20339.a 1.a $1$ $162.408$ \(\Q\) None \(1\) \(1\) \(-1\) \(-3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}-q^{4}-q^{5}+q^{6}-3q^{7}+\cdots\)
20339.2.a.e 20339.a 1.a $1$ $162.408$ \(\Q\) None \(2\) \(-1\) \(1\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-q^{3}+2q^{4}+q^{5}-2q^{6}-2q^{9}+\cdots\)
20339.2.a.f 20339.a 1.a $1$ $162.408$ \(\Q\) None \(2\) \(1\) \(-1\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+q^{3}+2q^{4}-q^{5}+2q^{6}+2q^{7}+\cdots\)
20339.2.a.g 20339.a 1.a $2$ $162.408$ \(\Q(\sqrt{5}) \) None \(-1\) \(2\) \(-2\) \(4\) $-$ $-$ $\mathrm{SU}(2)$
20339.2.a.h 20339.a 1.a $2$ $162.408$ \(\Q(\sqrt{5}) \) None \(-1\) \(4\) \(-2\) \(0\) $+$ $-$ $\mathrm{SU}(2)$
20339.2.a.i 20339.a 1.a $5$ $162.408$ 5.5.38569.1 None \(-1\) \(3\) \(6\) \(15\) $+$ $-$ $\mathrm{SU}(2)$
20339.2.a.j 20339.a 1.a $5$ $162.408$ 5.5.173513.1 None \(3\) \(1\) \(4\) \(9\) $-$ $-$ $\mathrm{SU}(2)$
20339.2.a.k 20339.a 1.a $9$ $162.408$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(-4\) \(-5\) \(0\) \(-19\) $-$ $-$ $\mathrm{SU}(2)$
20339.2.a.l 20339.a 1.a $11$ $162.408$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None \(1\) \(-6\) \(-3\) \(-17\) $+$ $-$ $\mathrm{SU}(2)$
20339.2.a.m 20339.a 1.a $16$ $162.408$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) not computed \(0\) \(0\) \(0\) \(0\) $+$ $+$
20339.2.a.n 20339.a 1.a $17$ $162.408$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None \(-2\) \(0\) \(-5\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$
20339.2.a.o 20339.a 1.a $17$ $162.408$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None \(0\) \(-2\) \(-7\) \(-8\) $-$ $-$ $\mathrm{SU}(2)$
20339.2.a.p 20339.a 1.a $17$ $162.408$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None \(0\) \(2\) \(7\) \(8\) $-$ $+$ $\mathrm{SU}(2)$
20339.2.a.q 20339.a 1.a $17$ $162.408$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None \(2\) \(0\) \(5\) \(2\) $+$ $-$ $\mathrm{SU}(2)$
20339.2.a.r 20339.a 1.a $20$ $162.408$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) not computed \(0\) \(0\) \(0\) \(0\) $-$ $+$
20339.2.a.s 20339.a 1.a $57$ $162.408$ None \(-3\) \(-12\) \(-18\) \(-9\) $-$ $-$ $\mathrm{SU}(2)$
20339.2.a.t 20339.a 1.a $57$ $162.408$ None \(-3\) \(0\) \(-6\) \(-15\) $+$ $+$ $\mathrm{SU}(2)$
20339.2.a.u 20339.a 1.a $57$ $162.408$ None \(3\) \(0\) \(6\) \(15\) $+$ $-$ $\mathrm{SU}(2)$
20339.2.a.v 20339.a 1.a $57$ $162.408$ None \(3\) \(12\) \(18\) \(9\) $-$ $+$ $\mathrm{SU}(2)$
20339.2.a.w 20339.a 1.a $75$ $162.408$ None \(-5\) \(1\) \(4\) \(1\) $-$ $-$ $\mathrm{SU}(2)$
20339.2.a.x 20339.a 1.a $75$ $162.408$ None \(5\) \(-1\) \(-4\) \(-1\) $-$ $-$ $\mathrm{SU}(2)$
20339.2.a.y 20339.a 1.a $95$ $162.408$ None \(-5\) \(0\) \(1\) \(-1\) $+$ $-$ $\mathrm{SU}(2)$
20339.2.a.z 20339.a 1.a $95$ $162.408$ None \(5\) \(0\) \(-1\) \(1\) $+$ $-$ $\mathrm{SU}(2)$
20339.2.a.ba 20339.a 1.a $108$ $162.408$ None \(-6\) \(-18\) \(-36\) \(-23\) $-$ $-$ $\mathrm{SU}(2)$
20339.2.a.bb 20339.a 1.a $108$ $162.408$ None \(-6\) \(-6\) \(-12\) \(-25\) $+$ $+$ $\mathrm{SU}(2)$
20339.2.a.bc 20339.a 1.a $108$ $162.408$ None \(6\) \(6\) \(12\) \(25\) $+$ $-$ $\mathrm{SU}(2)$
20339.2.a.bd 20339.a 1.a $108$ $162.408$ None \(6\) \(18\) \(36\) \(23\) $-$ $+$ $\mathrm{SU}(2)$
20339.2.a.be 20339.a 1.a $160$ $162.408$ not computed \(0\) \(0\) \(0\) \(0\) $+$ $+$
20339.2.a.bf 20339.a 1.a $200$ $162.408$ not computed \(0\) \(0\) \(0\) \(0\) $-$ $+$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(20339))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(20339)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(43))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(473))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1849))\)\(^{\oplus 2}\)