Defining parameters
| Level: | \( N \) | \(=\) | \( 20339 = 11 \cdot 43^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 20339.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 32 \) | ||
| Sturm bound: | \(3784\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(20339))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1936 | 1504 | 432 |
| Cusp forms | 1849 | 1504 | 345 |
| Eisenstein series | 87 | 0 | 87 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(11\) | \(43\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(462\) | \(359\) | \(103\) | \(441\) | \(359\) | \(82\) | \(21\) | \(0\) | \(21\) | |||
| \(+\) | \(-\) | \(-\) | \(506\) | \(392\) | \(114\) | \(484\) | \(392\) | \(92\) | \(22\) | \(0\) | \(22\) | |||
| \(-\) | \(+\) | \(-\) | \(506\) | \(403\) | \(103\) | \(484\) | \(403\) | \(81\) | \(22\) | \(0\) | \(22\) | |||
| \(-\) | \(-\) | \(+\) | \(462\) | \(350\) | \(112\) | \(440\) | \(350\) | \(90\) | \(22\) | \(0\) | \(22\) | |||
| Plus space | \(+\) | \(924\) | \(709\) | \(215\) | \(881\) | \(709\) | \(172\) | \(43\) | \(0\) | \(43\) | ||||
| Minus space | \(-\) | \(1012\) | \(795\) | \(217\) | \(968\) | \(795\) | \(173\) | \(44\) | \(0\) | \(44\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(20339))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 11 | 43 | |||||||
| 20339.2.a.a | $1$ | $162.408$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(3\) | $-$ | $-$ | \(q-q^{2}-q^{3}-q^{4}+q^{5}+q^{6}+3q^{7}+\cdots\) | |
| 20339.2.a.b | $1$ | $162.408$ | \(\Q\) | None | \(-1\) | \(1\) | \(-3\) | \(1\) | $+$ | $-$ | \(q-q^{2}+q^{3}-q^{4}-3q^{5}-q^{6}+q^{7}+\cdots\) | |
| 20339.2.a.c | $1$ | $162.408$ | \(\Q\) | None | \(1\) | \(-1\) | \(3\) | \(-1\) | $+$ | $+$ | \(q+q^{2}-q^{3}-q^{4}+3q^{5}-q^{6}-q^{7}+\cdots\) | |
| 20339.2.a.d | $1$ | $162.408$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-3\) | $-$ | $+$ | \(q+q^{2}+q^{3}-q^{4}-q^{5}+q^{6}-3q^{7}+\cdots\) | |
| 20339.2.a.e | $1$ | $162.408$ | \(\Q\) | None | \(2\) | \(-1\) | \(1\) | \(0\) | $+$ | $-$ | \(q+2q^{2}-q^{3}+2q^{4}+q^{5}-2q^{6}-2q^{9}+\cdots\) | |
| 20339.2.a.f | $1$ | $162.408$ | \(\Q\) | None | \(2\) | \(1\) | \(-1\) | \(2\) | $-$ | $-$ | \(q+2q^{2}+q^{3}+2q^{4}-q^{5}+2q^{6}+2q^{7}+\cdots\) | |
| 20339.2.a.g | $2$ | $162.408$ | \(\Q(\sqrt{5}) \) | None | \(-1\) | \(2\) | \(-2\) | \(4\) | $-$ | $-$ | ||
| 20339.2.a.h | $2$ | $162.408$ | \(\Q(\sqrt{5}) \) | None | \(-1\) | \(4\) | \(-2\) | \(0\) | $+$ | $-$ | ||
| 20339.2.a.i | $5$ | $162.408$ | 5.5.38569.1 | None | \(-1\) | \(3\) | \(6\) | \(15\) | $+$ | $-$ | ||
| 20339.2.a.j | $5$ | $162.408$ | 5.5.173513.1 | None | \(3\) | \(1\) | \(4\) | \(9\) | $-$ | $-$ | ||
| 20339.2.a.k | $9$ | $162.408$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-4\) | \(-5\) | \(0\) | \(-19\) | $-$ | $-$ | ||
| 20339.2.a.l | $11$ | $162.408$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(1\) | \(-6\) | \(-3\) | \(-17\) | $+$ | $-$ | ||
| 20339.2.a.m | $16$ | $162.408$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | not computed | \(0\) | \(0\) | \(0\) | \(0\) | $+$ | $+$ | ||
| 20339.2.a.n | $17$ | $162.408$ | \(\mathbb{Q}[x]/(x^{17} - \cdots)\) | None | \(-2\) | \(0\) | \(-5\) | \(-2\) | $+$ | $+$ | ||
| 20339.2.a.o | $17$ | $162.408$ | \(\mathbb{Q}[x]/(x^{17} - \cdots)\) | None | \(0\) | \(-2\) | \(-7\) | \(-8\) | $-$ | $-$ | ||
| 20339.2.a.p | $17$ | $162.408$ | \(\mathbb{Q}[x]/(x^{17} - \cdots)\) | None | \(0\) | \(2\) | \(7\) | \(8\) | $-$ | $+$ | ||
| 20339.2.a.q | $17$ | $162.408$ | \(\mathbb{Q}[x]/(x^{17} - \cdots)\) | None | \(2\) | \(0\) | \(5\) | \(2\) | $+$ | $-$ | ||
| 20339.2.a.r | $20$ | $162.408$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | not computed | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | ||
| 20339.2.a.s | $57$ | $162.408$ | None | \(-3\) | \(-12\) | \(-18\) | \(-9\) | $-$ | $-$ | |||
| 20339.2.a.t | $57$ | $162.408$ | None | \(-3\) | \(0\) | \(-6\) | \(-15\) | $+$ | $+$ | |||
| 20339.2.a.u | $57$ | $162.408$ | None | \(3\) | \(0\) | \(6\) | \(15\) | $+$ | $-$ | |||
| 20339.2.a.v | $57$ | $162.408$ | None | \(3\) | \(12\) | \(18\) | \(9\) | $-$ | $+$ | |||
| 20339.2.a.w | $75$ | $162.408$ | None | \(-5\) | \(1\) | \(4\) | \(1\) | $-$ | $-$ | |||
| 20339.2.a.x | $75$ | $162.408$ | None | \(5\) | \(-1\) | \(-4\) | \(-1\) | $-$ | $-$ | |||
| 20339.2.a.y | $95$ | $162.408$ | None | \(-5\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | |||
| 20339.2.a.z | $95$ | $162.408$ | None | \(5\) | \(0\) | \(-1\) | \(1\) | $+$ | $-$ | |||
| 20339.2.a.ba | $108$ | $162.408$ | None | \(-6\) | \(-18\) | \(-36\) | \(-23\) | $-$ | $-$ | |||
| 20339.2.a.bb | $108$ | $162.408$ | None | \(-6\) | \(-6\) | \(-12\) | \(-25\) | $+$ | $+$ | |||
| 20339.2.a.bc | $108$ | $162.408$ | None | \(6\) | \(6\) | \(12\) | \(25\) | $+$ | $-$ | |||
| 20339.2.a.bd | $108$ | $162.408$ | None | \(6\) | \(18\) | \(36\) | \(23\) | $-$ | $+$ | |||
| 20339.2.a.be | $160$ | $162.408$ | not computed | \(0\) | \(0\) | \(0\) | \(0\) | $+$ | $+$ | |||
| 20339.2.a.bf | $200$ | $162.408$ | not computed | \(0\) | \(0\) | \(0\) | \(0\) | $-$ | $+$ | |||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(20339))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(20339)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(43))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(473))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1849))\)\(^{\oplus 2}\)