Properties

Label 2032.4.v
Level $2032$
Weight $4$
Character orbit 2032.v
Rep. character $\chi_{2032}(353,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $1146$
Sturm bound $1024$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2032 = 2^{4} \cdot 127 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2032.v (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 127 \)
Character field: \(\Q(\zeta_{9})\)
Sturm bound: \(1024\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2032, [\chi])\).

Total New Old
Modular forms 4644 1158 3486
Cusp forms 4572 1146 3426
Eisenstein series 72 12 60

Trace form

\( 1146 q + 6 q^{3} - 3 q^{5} + 6 q^{7} - 6 q^{9} - 24 q^{11} - 6 q^{13} - 75 q^{15} - 6 q^{17} + 3 q^{19} + 198 q^{21} + 6 q^{23} - 14028 q^{25} - 645 q^{27} - 138 q^{29} + 726 q^{31} - 75 q^{33} - 369 q^{35}+ \cdots + 10389 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2032, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2032, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2032, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(127, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(254, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(508, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1016, [\chi])\)\(^{\oplus 2}\)