Properties

Label 2032.4.ce
Level $2032$
Weight $4$
Character orbit 2032.ce
Rep. character $\chi_{2032}(17,\cdot)$
Character field $\Q(\zeta_{63})$
Dimension $6876$
Sturm bound $1024$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2032 = 2^{4} \cdot 127 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2032.ce (of order \(63\) and degree \(36\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 127 \)
Character field: \(\Q(\zeta_{63})\)
Sturm bound: \(1024\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2032, [\chi])\).

Total New Old
Modular forms 27864 6948 20916
Cusp forms 27432 6876 20556
Eisenstein series 432 72 360

Trace form

\( 6876 q + 36 q^{3} - 39 q^{5} + 36 q^{7} - 36 q^{9} + 66 q^{11} - 36 q^{13} + 117 q^{15} - 36 q^{17} + 18 q^{19} + 1188 q^{21} + 36 q^{23} + 13986 q^{25} + 687 q^{27} + 96 q^{29} - 684 q^{31} - 219 q^{33}+ \cdots - 10347 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2032, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2032, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2032, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(127, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(254, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(508, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1016, [\chi])\)\(^{\oplus 2}\)