Defining parameters
Level: | \( N \) | \(=\) | \( 2032 = 2^{4} \cdot 127 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2032.ce (of order \(63\) and degree \(36\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 127 \) |
Character field: | \(\Q(\zeta_{63})\) | ||
Sturm bound: | \(1024\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(2032, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 27864 | 6948 | 20916 |
Cusp forms | 27432 | 6876 | 20556 |
Eisenstein series | 432 | 72 | 360 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(2032, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(2032, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(2032, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(127, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(254, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(508, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1016, [\chi])\)\(^{\oplus 2}\)