Properties

Label 20280.2.a.s
Level 2028020280
Weight 22
Character orbit 20280.a
Self dual yes
Analytic conductor 161.937161.937
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [20280,2,Mod(1,20280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(20280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("20280.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 20280=2335132 20280 = 2^{3} \cdot 3 \cdot 5 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 20280.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,1,0,-1,0,-4,0,1,0,0,0,0,0,-1,0,2,0,0,0,-4,0,0,0,1,0,1,0, -2,0,4,0,0,0,4,0,-6,0,0,0,6,0,4,0,-1,0,4,0,9,0,2,0,-10,0,0,0,0,0,0,0,-2, 0,-4,0,0,0,-8,0,0,0,-4,0,6,0,1,0,0,0,-8,0,1,0,-8,0,-2,0,-2,0,6,0,0,0,4, 0,0,0,14,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 161.936615299161.936615299
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+q3q54q7+q9q15+2q174q21+q25+q272q29+4q31+4q356q37+6q41+4q43q45+4q47+9q49+2q5110q53++14q97+O(q100) q + q^{3} - q^{5} - 4 q^{7} + q^{9} - q^{15} + 2 q^{17} - 4 q^{21} + q^{25} + q^{27} - 2 q^{29} + 4 q^{31} + 4 q^{35} - 6 q^{37} + 6 q^{41} + 4 q^{43} - q^{45} + 4 q^{47} + 9 q^{49} + 2 q^{51} - 10 q^{53}+ \cdots + 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
55 +1 +1
1313 +1 +1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.