Properties

Label 2028.1.v
Level $2028$
Weight $1$
Character orbit 2028.v
Rep. character $\chi_{2028}(587,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $16$
Newform subspaces $4$
Sturm bound $364$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2028.v (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 156 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 4 \)
Sturm bound: \(364\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2028, [\chi])\).

Total New Old
Modular forms 128 96 32
Cusp forms 16 16 0
Eisenstein series 112 80 32

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q + 8 q^{9} - 8 q^{16} + 8 q^{22} + 16 q^{40} + 16 q^{66} - 8 q^{81} + 8 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2028, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2028.1.v.a 2028.v 156.v $4$ $1.012$ \(\Q(\zeta_{12})\) $D_{4}$ \(\Q(\sqrt{-39}) \) None 2028.1.l.a \(-2\) \(0\) \(4\) \(0\) \(q-\zeta_{12}^{2}q^{2}-\zeta_{12}^{5}q^{3}+\zeta_{12}^{4}q^{4}+\cdots\)
2028.1.v.b 2028.v 156.v $4$ $1.012$ \(\Q(\zeta_{12})\) $D_{4}$ \(\Q(\sqrt{-39}) \) None 2028.1.l.a \(0\) \(0\) \(-4\) \(0\) \(q+\zeta_{12}^{5}q^{2}+\zeta_{12}^{5}q^{3}-\zeta_{12}^{4}q^{4}+\cdots\)
2028.1.v.c 2028.v 156.v $4$ $1.012$ \(\Q(\zeta_{12})\) $D_{4}$ \(\Q(\sqrt{-39}) \) None 2028.1.l.a \(0\) \(0\) \(4\) \(0\) \(q-\zeta_{12}^{5}q^{2}+\zeta_{12}^{5}q^{3}-\zeta_{12}^{4}q^{4}+\cdots\)
2028.1.v.d 2028.v 156.v $4$ $1.012$ \(\Q(\zeta_{12})\) $D_{4}$ \(\Q(\sqrt{-39}) \) None 2028.1.l.a \(2\) \(0\) \(-4\) \(0\) \(q+\zeta_{12}^{2}q^{2}-\zeta_{12}^{5}q^{3}+\zeta_{12}^{4}q^{4}+\cdots\)