Defining parameters
| Level: | \( N \) | \(=\) | \( 2025 = 3^{4} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2025.k (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Sturm bound: | \(540\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2025, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 612 | 148 | 464 |
| Cusp forms | 468 | 140 | 328 |
| Eisenstein series | 144 | 8 | 136 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2025, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2025, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2025, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(405, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 2}\)