Properties

Label 2025.2.k
Level $2025$
Weight $2$
Character orbit 2025.k
Rep. character $\chi_{2025}(1324,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $140$
Sturm bound $540$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2025.k (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(540\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2025, [\chi])\).

Total New Old
Modular forms 612 148 464
Cusp forms 468 140 328
Eisenstein series 144 8 136

Trace form

\( 140 q + 64 q^{4} - 52 q^{16} + 8 q^{19} + 16 q^{31} - 72 q^{34} - 96 q^{46} + 78 q^{49} - 20 q^{61} + 64 q^{64} + 88 q^{76} + 80 q^{79} - 16 q^{91} + 132 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2025, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2025, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2025, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(405, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 2}\)