Properties

Label 2023.1.d.b.2022.5
Level $2023$
Weight $1$
Character 2023.2022
Analytic conductor $1.010$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2023,1,Mod(2022,2023)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2023, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2023.2022");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2023.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00960852056\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.419904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} + 9x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.16748793615841.1

Embedding invariants

Embedding label 2022.5
Root \(1.87939i\) of defining polynomial
Character \(\chi\) \(=\) 2023.2022
Dual form 2023.1.d.b.2022.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.87939 q^{2} +2.53209 q^{4} -1.00000i q^{7} +2.87939 q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+1.87939 q^{2} +2.53209 q^{4} -1.00000i q^{7} +2.87939 q^{8} -1.00000 q^{9} +1.00000i q^{11} -1.87939i q^{14} +2.87939 q^{16} -1.87939 q^{18} +1.87939i q^{22} -0.347296i q^{23} -1.00000 q^{25} -2.53209i q^{28} +1.53209i q^{29} +2.53209 q^{32} -2.53209 q^{36} -1.87939i q^{37} -0.347296 q^{43} +2.53209i q^{44} -0.652704i q^{46} -1.00000 q^{49} -1.87939 q^{50} -0.347296 q^{53} -2.87939i q^{56} +2.87939i q^{58} +1.00000i q^{63} +1.87939 q^{64} -1.00000 q^{67} +1.53209i q^{71} -2.87939 q^{72} -3.53209i q^{74} +1.00000 q^{77} +1.87939i q^{79} +1.00000 q^{81} -0.652704 q^{86} +2.87939i q^{88} -0.879385i q^{92} -1.87939 q^{98} -1.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{4} + 6 q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{4} + 6 q^{8} - 6 q^{9} + 6 q^{16} - 6 q^{25} + 6 q^{32} - 6 q^{36} - 6 q^{49} - 6 q^{67} - 6 q^{72} + 6 q^{77} + 6 q^{81} - 6 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2023\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(1737\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 2.53209 2.53209
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) − 1.00000i − 1.00000i
\(8\) 2.87939 2.87939
\(9\) −1.00000 −1.00000
\(10\) 0 0
\(11\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) − 1.87939i − 1.87939i
\(15\) 0 0
\(16\) 2.87939 2.87939
\(17\) 0 0
\(18\) −1.87939 −1.87939
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.87939i 1.87939i
\(23\) − 0.347296i − 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(24\) 0 0
\(25\) −1.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) − 2.53209i − 2.53209i
\(29\) 1.53209i 1.53209i 0.642788 + 0.766044i \(0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 2.53209 2.53209
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −2.53209 −2.53209
\(37\) − 1.87939i − 1.87939i −0.342020 0.939693i \(-0.611111\pi\)
0.342020 0.939693i \(-0.388889\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(44\) 2.53209i 2.53209i
\(45\) 0 0
\(46\) − 0.652704i − 0.652704i
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −1.00000 −1.00000
\(50\) −1.87939 −1.87939
\(51\) 0 0
\(52\) 0 0
\(53\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 2.87939i − 2.87939i
\(57\) 0 0
\(58\) 2.87939i 2.87939i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 1.00000i 1.00000i
\(64\) 1.87939 1.87939
\(65\) 0 0
\(66\) 0 0
\(67\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.53209i 1.53209i 0.642788 + 0.766044i \(0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(72\) −2.87939 −2.87939
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) − 3.53209i − 3.53209i
\(75\) 0 0
\(76\) 0 0
\(77\) 1.00000 1.00000
\(78\) 0 0
\(79\) 1.87939i 1.87939i 0.342020 + 0.939693i \(0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(80\) 0 0
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.652704 −0.652704
\(87\) 0 0
\(88\) 2.87939i 2.87939i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) − 0.879385i − 0.879385i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −1.87939 −1.87939
\(99\) − 1.00000i − 1.00000i
\(100\) −2.53209 −2.53209
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.652704 −0.652704
\(107\) − 1.87939i − 1.87939i −0.342020 0.939693i \(-0.611111\pi\)
0.342020 0.939693i \(-0.388889\pi\)
\(108\) 0 0
\(109\) − 0.347296i − 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 2.87939i − 2.87939i
\(113\) − 0.347296i − 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.87939i 3.87939i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 1.87939i 1.87939i
\(127\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(128\) 1.00000 1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.87939 −1.87939
\(135\) 0 0
\(136\) 0 0
\(137\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.87939i 2.87939i
\(143\) 0 0
\(144\) −2.87939 −2.87939
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) − 4.75877i − 4.75877i
\(149\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(150\) 0 0
\(151\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 1.87939 1.87939
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 3.53209i 3.53209i
\(159\) 0 0
\(160\) 0 0
\(161\) −0.347296 −0.347296
\(162\) 1.87939 1.87939
\(163\) − 1.53209i − 1.53209i −0.642788 0.766044i \(-0.722222\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −0.879385 −0.879385
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 1.00000i 1.00000i
\(176\) 2.87939i 2.87939i
\(177\) 0 0
\(178\) 0 0
\(179\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) − 1.00000i − 1.00000i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(192\) 0 0
\(193\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −2.53209 −2.53209
\(197\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(198\) − 1.87939i − 1.87939i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −2.87939 −2.87939
\(201\) 0 0
\(202\) 0 0
\(203\) 1.53209 1.53209
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.347296i 0.347296i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 1.53209i − 1.53209i −0.642788 0.766044i \(-0.722222\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(212\) −0.879385 −0.879385
\(213\) 0 0
\(214\) − 3.53209i − 3.53209i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) − 0.652704i − 0.652704i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) − 2.53209i − 2.53209i
\(225\) 1.00000 1.00000
\(226\) − 0.652704i − 0.652704i
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.41147i 4.41147i
\(233\) − 1.87939i − 1.87939i −0.342020 0.939693i \(-0.611111\pi\)
0.342020 0.939693i \(-0.388889\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 2.53209i 2.53209i
\(253\) 0.347296 0.347296
\(254\) −2.87939 −2.87939
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) −1.87939 −1.87939
\(260\) 0 0
\(261\) − 1.53209i − 1.53209i
\(262\) 0 0
\(263\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −2.53209 −2.53209
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 2.87939 2.87939
\(275\) − 1.00000i − 1.00000i
\(276\) 0 0
\(277\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 3.87939i 3.87939i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −2.53209 −2.53209
\(289\) 0 0
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 5.41147i − 5.41147i
\(297\) 0 0
\(298\) 2.87939 2.87939
\(299\) 0 0
\(300\) 0 0
\(301\) 0.347296i 0.347296i
\(302\) 1.87939 1.87939
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 2.53209 2.53209
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 4.75877i 4.75877i
\(317\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(318\) 0 0
\(319\) −1.53209 −1.53209
\(320\) 0 0
\(321\) 0 0
\(322\) −0.652704 −0.652704
\(323\) 0 0
\(324\) 2.53209 2.53209
\(325\) 0 0
\(326\) − 2.87939i − 2.87939i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(332\) 0 0
\(333\) 1.87939i 1.87939i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.53209i 1.53209i 0.642788 + 0.766044i \(0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(338\) 1.87939 1.87939
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000i 1.00000i
\(344\) −1.00000 −1.00000
\(345\) 0 0
\(346\) 0 0
\(347\) 1.87939i 1.87939i 0.342020 + 0.939693i \(0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 1.87939i 1.87939i
\(351\) 0 0
\(352\) 2.53209i 2.53209i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −2.87939 −2.87939
\(359\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) − 1.00000i − 1.00000i
\(369\) 0 0
\(370\) 0 0
\(371\) 0.347296i 0.347296i
\(372\) 0 0
\(373\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.347296i 0.347296i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.652704 0.652704
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.87939i 1.87939i
\(387\) 0.347296 0.347296
\(388\) 0 0
\(389\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −2.87939 −2.87939
\(393\) 0 0
\(394\) 1.87939i 1.87939i
\(395\) 0 0
\(396\) − 2.53209i − 2.53209i
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −2.87939 −2.87939
\(401\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 2.87939 2.87939
\(407\) 1.87939 1.87939
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0.652704i 0.652704i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) − 2.87939i − 2.87939i
\(423\) 0 0
\(424\) −1.00000 −1.00000
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) − 4.75877i − 4.75877i
\(429\) 0 0
\(430\) 0 0
\(431\) 1.87939i 1.87939i 0.342020 + 0.939693i \(0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) − 0.879385i − 0.879385i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) − 1.87939i − 1.87939i
\(449\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(450\) 1.87939 1.87939
\(451\) 0 0
\(452\) − 0.879385i − 0.879385i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(464\) 4.41147i 4.41147i
\(465\) 0 0
\(466\) − 3.53209i − 3.53209i
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 1.00000i 1.00000i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 0.347296i − 0.347296i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.347296 0.347296
\(478\) −1.87939 −1.87939
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 1.53209i − 1.53209i −0.642788 0.766044i \(-0.722222\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.53209 1.53209
\(498\) 0 0
\(499\) 1.87939i 1.87939i 0.342020 + 0.939693i \(0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 2.87939i 2.87939i
\(505\) 0 0
\(506\) 0.652704 0.652704
\(507\) 0 0
\(508\) −3.87939 −3.87939
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −3.53209 −3.53209
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) − 2.87939i − 2.87939i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 3.53209 3.53209
\(527\) 0 0
\(528\) 0 0
\(529\) 0.879385 0.879385
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −2.87939 −2.87939
\(537\) 0 0
\(538\) 0 0
\(539\) − 1.00000i − 1.00000i
\(540\) 0 0
\(541\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.347296i 0.347296i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(548\) 3.87939 3.87939
\(549\) 0 0
\(550\) − 1.87939i − 1.87939i
\(551\) 0 0
\(552\) 0 0
\(553\) 1.87939 1.87939
\(554\) − 1.87939i − 1.87939i
\(555\) 0 0
\(556\) 0 0
\(557\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 3.53209 3.53209
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 1.00000i − 1.00000i
\(568\) 4.41147i 4.41147i
\(569\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) − 0.347296i − 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.347296i 0.347296i
\(576\) −1.87939 −1.87939
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 0.347296i − 0.347296i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) − 5.41147i − 5.41147i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.87939 3.87939
\(597\) 0 0
\(598\) 0 0
\(599\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0.652704i 0.652704i
\(603\) 1.00000 1.00000
\(604\) 2.53209 2.53209
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 2.87939 2.87939
\(617\) 1.53209i 1.53209i 0.642788 + 0.766044i \(0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(632\) 5.41147i 5.41147i
\(633\) 0 0
\(634\) − 3.75877i − 3.75877i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −2.87939 −2.87939
\(639\) − 1.53209i − 1.53209i
\(640\) 0 0
\(641\) − 1.87939i − 1.87939i −0.342020 0.939693i \(-0.611111\pi\)
0.342020 0.939693i \(-0.388889\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) −0.879385 −0.879385
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 2.87939 2.87939
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) − 3.87939i − 3.87939i
\(653\) − 0.347296i − 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 3.53209 3.53209
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 3.53209i 3.53209i
\(667\) 0.532089 0.532089
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 0.347296i − 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(674\) 2.87939i 2.87939i
\(675\) 0 0
\(676\) 2.53209 2.53209
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.53209i 1.53209i 0.642788 + 0.766044i \(0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.87939i 1.87939i
\(687\) 0 0
\(688\) −1.00000 −1.00000
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) −1.00000 −1.00000
\(694\) 3.53209i 3.53209i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 2.53209i 2.53209i
\(701\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.87939i 1.87939i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(710\) 0 0
\(711\) − 1.87939i − 1.87939i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −3.87939 −3.87939
\(717\) 0 0
\(718\) −2.87939 −2.87939
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.87939 1.87939
\(723\) 0 0
\(724\) 0 0
\(725\) − 1.53209i − 1.53209i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) − 0.879385i − 0.879385i
\(737\) − 1.00000i − 1.00000i
\(738\) 0 0
\(739\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.652704i 0.652704i
\(743\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −3.53209 −3.53209
\(747\) 0 0
\(748\) 0 0
\(749\) −1.87939 −1.87939
\(750\) 0 0
\(751\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(758\) 0.652704i 0.652704i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) −0.347296 −0.347296
\(764\) 0.879385 0.879385
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.53209i 2.53209i
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0.652704 0.652704
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 3.53209 3.53209
\(779\) 0 0
\(780\) 0 0
\(781\) −1.53209 −1.53209
\(782\) 0 0
\(783\) 0 0
\(784\) −2.87939 −2.87939
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 2.53209i 2.53209i
\(789\) 0 0
\(790\) 0 0
\(791\) −0.347296 −0.347296
\(792\) − 2.87939i − 2.87939i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2.53209 −2.53209
\(801\) 0 0
\(802\) − 3.75877i − 3.75877i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 0.347296i − 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 3.87939 3.87939
\(813\) 0 0
\(814\) 3.53209 3.53209
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.347296i 0.347296i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(822\) 0 0
\(823\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.53209i − 1.53209i −0.642788 0.766044i \(-0.722222\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(828\) 0.879385i 0.879385i
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −1.34730 −1.34730
\(842\) −1.87939 −1.87939
\(843\) 0 0
\(844\) − 3.87939i − 3.87939i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −1.00000 −1.00000
\(849\) 0 0
\(850\) 0 0
\(851\) −0.652704 −0.652704
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) − 5.41147i − 5.41147i
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 3.53209i 3.53209i
\(863\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.87939 −1.87939
\(870\) 0 0
\(871\) 0 0
\(872\) − 1.00000i − 1.00000i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.87939i 1.87939i 0.342020 + 0.939693i \(0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 1.87939 1.87939
\(883\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −3.53209 −3.53209
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 1.53209i 1.53209i
\(890\) 0 0
\(891\) 1.00000i 1.00000i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) − 1.00000i − 1.00000i
\(897\) 0 0
\(898\) 1.87939i 1.87939i
\(899\) 0 0
\(900\) 2.53209 2.53209
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) − 1.00000i − 1.00000i
\(905\) 0 0
\(906\) 0 0
\(907\) − 0.347296i − 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.87939i 1.87939i 0.342020 + 0.939693i \(0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −0.652704 −0.652704
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.87939i 1.87939i
\(926\) −3.53209 −3.53209
\(927\) 0 0
\(928\) 3.87939i 3.87939i
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) − 4.75877i − 4.75877i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 1.87939i 1.87939i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) − 0.652704i − 0.652704i
\(947\) 0.347296i 0.347296i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(954\) 0.652704 0.652704
\(955\) 0 0
\(956\) −2.53209 −2.53209
\(957\) 0 0
\(958\) 0 0
\(959\) − 1.53209i − 1.53209i
\(960\) 0 0
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) 1.87939i 1.87939i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) − 2.87939i − 2.87939i
\(975\) 0 0
\(976\) 0 0
\(977\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.347296i 0.347296i
\(982\) 1.87939 1.87939
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.120615i 0.120615i
\(990\) 0 0
\(991\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 2.87939 2.87939
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 3.53209i 3.53209i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2023.1.d.b.2022.5 6
7.6 odd 2 CM 2023.1.d.b.2022.5 6
17.2 even 8 2023.1.f.c.251.5 12
17.3 odd 16 2023.1.l.c.1266.5 24
17.4 even 4 2023.1.c.d.1735.1 yes 3
17.5 odd 16 2023.1.l.c.468.2 24
17.6 odd 16 2023.1.l.c.1868.6 24
17.7 odd 16 2023.1.l.c.1889.1 24
17.8 even 8 2023.1.f.c.1483.1 12
17.9 even 8 2023.1.f.c.1483.2 12
17.10 odd 16 2023.1.l.c.1889.2 24
17.11 odd 16 2023.1.l.c.1868.5 24
17.12 odd 16 2023.1.l.c.468.1 24
17.13 even 4 2023.1.c.c.1735.1 3
17.14 odd 16 2023.1.l.c.1266.6 24
17.15 even 8 2023.1.f.c.251.6 12
17.16 even 2 inner 2023.1.d.b.2022.6 6
119.6 even 16 2023.1.l.c.1868.6 24
119.13 odd 4 2023.1.c.c.1735.1 3
119.20 even 16 2023.1.l.c.1266.5 24
119.27 even 16 2023.1.l.c.1889.2 24
119.41 even 16 2023.1.l.c.1889.1 24
119.48 even 16 2023.1.l.c.1266.6 24
119.55 odd 4 2023.1.c.d.1735.1 yes 3
119.62 even 16 2023.1.l.c.1868.5 24
119.76 odd 8 2023.1.f.c.1483.1 12
119.83 odd 8 2023.1.f.c.251.6 12
119.90 even 16 2023.1.l.c.468.2 24
119.97 even 16 2023.1.l.c.468.1 24
119.104 odd 8 2023.1.f.c.251.5 12
119.111 odd 8 2023.1.f.c.1483.2 12
119.118 odd 2 inner 2023.1.d.b.2022.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2023.1.c.c.1735.1 3 17.13 even 4
2023.1.c.c.1735.1 3 119.13 odd 4
2023.1.c.d.1735.1 yes 3 17.4 even 4
2023.1.c.d.1735.1 yes 3 119.55 odd 4
2023.1.d.b.2022.5 6 1.1 even 1 trivial
2023.1.d.b.2022.5 6 7.6 odd 2 CM
2023.1.d.b.2022.6 6 17.16 even 2 inner
2023.1.d.b.2022.6 6 119.118 odd 2 inner
2023.1.f.c.251.5 12 17.2 even 8
2023.1.f.c.251.5 12 119.104 odd 8
2023.1.f.c.251.6 12 17.15 even 8
2023.1.f.c.251.6 12 119.83 odd 8
2023.1.f.c.1483.1 12 17.8 even 8
2023.1.f.c.1483.1 12 119.76 odd 8
2023.1.f.c.1483.2 12 17.9 even 8
2023.1.f.c.1483.2 12 119.111 odd 8
2023.1.l.c.468.1 24 17.12 odd 16
2023.1.l.c.468.1 24 119.97 even 16
2023.1.l.c.468.2 24 17.5 odd 16
2023.1.l.c.468.2 24 119.90 even 16
2023.1.l.c.1266.5 24 17.3 odd 16
2023.1.l.c.1266.5 24 119.20 even 16
2023.1.l.c.1266.6 24 17.14 odd 16
2023.1.l.c.1266.6 24 119.48 even 16
2023.1.l.c.1868.5 24 17.11 odd 16
2023.1.l.c.1868.5 24 119.62 even 16
2023.1.l.c.1868.6 24 17.6 odd 16
2023.1.l.c.1868.6 24 119.6 even 16
2023.1.l.c.1889.1 24 17.7 odd 16
2023.1.l.c.1889.1 24 119.41 even 16
2023.1.l.c.1889.2 24 17.10 odd 16
2023.1.l.c.1889.2 24 119.27 even 16