Defining parameters
| Level: | \( N \) | = | \( 200 = 2^{3} \cdot 5^{2} \) |
| Weight: | \( k \) | = | \( 9 \) |
| Nonzero newspaces: | \( 8 \) | ||
| Sturm bound: | \(21600\) | ||
| Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(200))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 9768 | 5017 | 4751 |
| Cusp forms | 9432 | 4935 | 4497 |
| Eisenstein series | 336 | 82 | 254 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(200))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 200.9.b | \(\chi_{200}(151, \cdot)\) | None | 0 | 1 |
| 200.9.e | \(\chi_{200}(99, \cdot)\) | n/a | 142 | 1 |
| 200.9.g | \(\chi_{200}(51, \cdot)\) | n/a | 149 | 1 |
| 200.9.h | \(\chi_{200}(199, \cdot)\) | None | 0 | 1 |
| 200.9.i | \(\chi_{200}(93, \cdot)\) | n/a | 284 | 2 |
| 200.9.l | \(\chi_{200}(57, \cdot)\) | 200.9.l.a | 8 | 2 |
| 200.9.l.b | 8 | |||
| 200.9.l.c | 12 | |||
| 200.9.l.d | 12 | |||
| 200.9.l.e | 16 | |||
| 200.9.l.f | 16 | |||
| 200.9.n | \(\chi_{200}(11, \cdot)\) | n/a | 952 | 4 |
| 200.9.p | \(\chi_{200}(39, \cdot)\) | None | 0 | 4 |
| 200.9.r | \(\chi_{200}(31, \cdot)\) | None | 0 | 4 |
| 200.9.s | \(\chi_{200}(19, \cdot)\) | n/a | 952 | 4 |
| 200.9.u | \(\chi_{200}(17, \cdot)\) | n/a | 480 | 8 |
| 200.9.x | \(\chi_{200}(13, \cdot)\) | n/a | 1904 | 8 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(200))\) into lower level spaces
\( S_{9}^{\mathrm{old}}(\Gamma_1(200)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 2}\)