Properties

Label 200.9
Level 200
Weight 9
Dimension 4935
Nonzero newspaces 8
Sturm bound 21600
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(21600\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(200))\).

Total New Old
Modular forms 9768 5017 4751
Cusp forms 9432 4935 4497
Eisenstein series 336 82 254

Trace form

\( 4935 q - 10 q^{2} - 14 q^{3} - 344 q^{4} + 336 q^{5} - 760 q^{6} + 308 q^{7} - 2740 q^{8} + 10909 q^{9} - 16 q^{10} - 3862 q^{11} + 33844 q^{12} + 9520 q^{13} + 86124 q^{14} + 111056 q^{15} + 48476 q^{16}+ \cdots + 1133900018 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(200))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
200.9.b \(\chi_{200}(151, \cdot)\) None 0 1
200.9.e \(\chi_{200}(99, \cdot)\) n/a 142 1
200.9.g \(\chi_{200}(51, \cdot)\) n/a 149 1
200.9.h \(\chi_{200}(199, \cdot)\) None 0 1
200.9.i \(\chi_{200}(93, \cdot)\) n/a 284 2
200.9.l \(\chi_{200}(57, \cdot)\) 200.9.l.a 8 2
200.9.l.b 8
200.9.l.c 12
200.9.l.d 12
200.9.l.e 16
200.9.l.f 16
200.9.n \(\chi_{200}(11, \cdot)\) n/a 952 4
200.9.p \(\chi_{200}(39, \cdot)\) None 0 4
200.9.r \(\chi_{200}(31, \cdot)\) None 0 4
200.9.s \(\chi_{200}(19, \cdot)\) n/a 952 4
200.9.u \(\chi_{200}(17, \cdot)\) n/a 480 8
200.9.x \(\chi_{200}(13, \cdot)\) n/a 1904 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(200))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(200)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 2}\)