Properties

Label 20.37.d
Level $20$
Weight $37$
Character orbit 20.d
Rep. character $\chi_{20}(19,\cdot)$
Character field $\Q$
Dimension $106$
Newform subspaces $3$
Sturm bound $111$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 37 \)
Character orbit: \([\chi]\) \(=\) 20.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(111\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{37}(20, [\chi])\).

Total New Old
Modular forms 110 110 0
Cusp forms 106 106 0
Eisenstein series 4 4 0

Trace form

\( 106 q - 22883429648 q^{4} - 1587598983830 q^{5} - 103618226406352 q^{6} + 51\!\cdots\!10 q^{9} + 16\!\cdots\!40 q^{10} - 13\!\cdots\!92 q^{14} + 10\!\cdots\!56 q^{16} - 11\!\cdots\!20 q^{20} - 56\!\cdots\!44 q^{21}+ \cdots + 75\!\cdots\!08 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{37}^{\mathrm{new}}(20, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
20.37.d.a 20.d 20.d $1$ $164.183$ \(\Q\) \(\Q(\sqrt{-5}) \) 20.37.d.a \(-262144\) \(652871042\) \(38\!\cdots\!25\) \(15\!\cdots\!82\) $\mathrm{U}(1)[D_{2}]$ \(q-2^{18}q^{2}+652871042q^{3}+2^{36}q^{4}+\cdots\)
20.37.d.b 20.d 20.d $1$ $164.183$ \(\Q\) \(\Q(\sqrt{-5}) \) 20.37.d.a \(262144\) \(-652871042\) \(38\!\cdots\!25\) \(-15\!\cdots\!82\) $\mathrm{U}(1)[D_{2}]$ \(q+2^{18}q^{2}-652871042q^{3}+2^{36}q^{4}+\cdots\)
20.37.d.c 20.d 20.d $104$ $164.183$ None 20.37.d.c \(0\) \(0\) \(-92\!\cdots\!80\) \(0\) $\mathrm{SU}(2)[C_{2}]$