Defining parameters
Level: | \( N \) | \(=\) | \( 20 = 2^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 37 \) |
Character orbit: | \([\chi]\) | \(=\) | 20.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(111\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{37}(20, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 110 | 110 | 0 |
Cusp forms | 106 | 106 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{37}^{\mathrm{new}}(20, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
20.37.d.a | $1$ | $164.183$ | \(\Q\) | \(\Q(\sqrt{-5}) \) | \(-262144\) | \(652871042\) | \(38\!\cdots\!25\) | \(15\!\cdots\!82\) | \(q-2^{18}q^{2}+652871042q^{3}+2^{36}q^{4}+\cdots\) |
20.37.d.b | $1$ | $164.183$ | \(\Q\) | \(\Q(\sqrt{-5}) \) | \(262144\) | \(-652871042\) | \(38\!\cdots\!25\) | \(-15\!\cdots\!82\) | \(q+2^{18}q^{2}-652871042q^{3}+2^{36}q^{4}+\cdots\) |
20.37.d.c | $104$ | $164.183$ | None | \(0\) | \(0\) | \(-92\!\cdots\!80\) | \(0\) |