Properties

Label 20.22
Level 20
Weight 22
Dimension 139
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 528
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) = \( 22 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(528\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_1(20))\).

Total New Old
Modular forms 262 147 115
Cusp forms 242 139 103
Eisenstein series 20 8 12

Trace form

\( 139 q - 2 q^{2} - 253532 q^{3} - 20857359 q^{5} + 89518280 q^{6} - 505663888 q^{7} - 5437750796 q^{8} - 832771423 q^{9} - 79518119114 q^{10} - 77552212340 q^{11} - 570336694400 q^{12} - 1667127995880 q^{13}+ \cdots - 25\!\cdots\!40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_1(20))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
20.22.a \(\chi_{20}(1, \cdot)\) 20.22.a.a 3 1
20.22.a.b 4
20.22.c \(\chi_{20}(9, \cdot)\) 20.22.c.a 10 1
20.22.e \(\chi_{20}(3, \cdot)\) 20.22.e.a 2 2
20.22.e.b 120

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_1(20))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_1(20)) \cong \) \(S_{22}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)