Properties

Label 19536.2.a.r
Level $19536$
Weight $2$
Character orbit 19536.a
Self dual yes
Analytic conductor $155.996$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [19536,2,Mod(1,19536)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("19536.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(19536, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 19536 = 2^{4} \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 19536.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,1,0,-2,0,-4,0,1,0,1,0,-2,0,-2,0,-6,0,-8,0,-4,0,0,0,-1,0, 1,0,-2,0,0,0,1,0,8,0,1,0,-2,0,-6,0,-8,0,-2,0,-12,0,9,0,-6,0,-6,0,-2,0, -8,0,0,0,-2,0,-4,0,4,0,-4,0,0,0,12,0,-6,0,-1,0,-4,0,8,0,1,0,-4,0,12,0, -2,0,-10,0,8,0,0,0,16,0,2,0,1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(155.995745389\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} - 2 q^{5} - 4 q^{7} + q^{9} + q^{11} - 2 q^{13} - 2 q^{15} - 6 q^{17} - 8 q^{19} - 4 q^{21} - q^{25} + q^{27} - 2 q^{29} + q^{33} + 8 q^{35} + q^{37} - 2 q^{39} - 6 q^{41} - 8 q^{43} - 2 q^{45}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(11\) \( -1 \)
\(37\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.