Properties

Label 195.2.bb
Level $195$
Weight $2$
Character orbit 195.bb
Rep. character $\chi_{195}(121,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $20$
Newform subspaces $3$
Sturm bound $56$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.bb (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(56\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(195, [\chi])\).

Total New Old
Modular forms 64 20 44
Cusp forms 48 20 28
Eisenstein series 16 0 16

Trace form

\( 20 q - 2 q^{3} + 12 q^{4} + 6 q^{7} - 10 q^{9} + 4 q^{10} - 8 q^{12} - 2 q^{13} - 8 q^{14} - 8 q^{16} - 12 q^{17} - 12 q^{19} - 24 q^{20} + 12 q^{22} - 4 q^{23} - 20 q^{25} - 32 q^{26} + 4 q^{27} - 12 q^{28}+ \cdots - 96 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(195, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
195.2.bb.a 195.bb 13.e $4$ $1.557$ \(\Q(\zeta_{12})\) None 195.2.bb.a \(-6\) \(-2\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1+\zeta_{12}-\zeta_{12}^{2})q^{2}+(-1+\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
195.2.bb.b 195.bb 13.e $8$ $1.557$ 8.0.191102976.5 None 195.2.bb.b \(0\) \(4\) \(0\) \(12\) $\mathrm{SU}(2)[C_{6}]$ \(q+(2\beta _{1}+\beta _{3}-\beta _{5}-\beta _{7})q^{2}+(1-\beta _{4}+\cdots)q^{3}+\cdots\)
195.2.bb.c 195.bb 13.e $8$ $1.557$ 8.0.56070144.2 None 195.2.bb.c \(6\) \(-4\) \(0\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-\beta _{1}-\beta _{2}-\beta _{4}+\beta _{5}+\beta _{6})q^{2}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(195, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(195, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)