Defining parameters
Level: | \( N \) | \(=\) | \( 1925 = 5^{2} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1925.ct (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 385 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1925, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 32 | 32 |
Cusp forms | 16 | 16 | 0 |
Eisenstein series | 48 | 16 | 32 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 16 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1925, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1925.1.ct.a | $8$ | $0.961$ | \(\Q(\zeta_{24})\) | $D_{6}$ | \(\Q(\sqrt{-55}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{24}^{7}q^{2}+\zeta_{24}^{3}q^{7}-\zeta_{24}^{9}q^{8}+\cdots\) |
1925.1.ct.b | $8$ | $0.961$ | \(\Q(\zeta_{24})\) | $D_{6}$ | \(\Q(\sqrt{-55}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{24}^{5}+\zeta_{24}^{9})q^{2}+(-\zeta_{24}^{2}-\zeta_{24}^{6}+\cdots)q^{4}+\cdots\) |