Properties

Label 1925.1.ct
Level $1925$
Weight $1$
Character orbit 1925.ct
Rep. character $\chi_{1925}(318,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $16$
Newform subspaces $2$
Sturm bound $240$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1925.ct (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 385 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 2 \)
Sturm bound: \(240\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1925, [\chi])\).

Total New Old
Modular forms 64 32 32
Cusp forms 16 16 0
Eisenstein series 48 16 32

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q - 16 q^{36} + 8 q^{56} - 16 q^{71} + 8 q^{81} + 8 q^{86} + 8 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1925, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1925.1.ct.a 1925.ct 385.af $8$ $0.961$ \(\Q(\zeta_{24})\) $D_{6}$ \(\Q(\sqrt{-55}) \) None 1925.1.ct.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{24}^{7}q^{2}+\zeta_{24}^{3}q^{7}-\zeta_{24}^{9}q^{8}+\cdots\)
1925.1.ct.b 1925.ct 385.af $8$ $0.961$ \(\Q(\zeta_{24})\) $D_{6}$ \(\Q(\sqrt{-55}) \) None 1925.1.ct.b \(0\) \(0\) \(0\) \(0\) \(q+(\zeta_{24}^{5}+\zeta_{24}^{9})q^{2}+(-\zeta_{24}^{2}-\zeta_{24}^{6}+\cdots)q^{4}+\cdots\)