gp:[N,k,chi] = [19110,2,Mod(1,19110)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("19110.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(19110, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage:traces = [1,1,-1,1,1,-1,0,1,1,1,-5,-1,1,0,-1,1,5,1,2,1,0,-5,3,-1,1,1,-1,
0,-2,-1,-4,1,5,5,0,1,3,2,-1,1,3,0,10,-5,1,3,12,-1,0,1,-5,1,-6,-1,-5,0,
-2,-2,-15,-1,-14,-4,0,1,1,5,7,5,-3,0,0,1,1,3,-1,2,0,-1,3,1,1,3,4,0,5,10,
2,-5,13,1,0,3,4,12,2,-1,-13,0,-5,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
gp:f = lf[1] \\ Warning: the index may be different
sage:f.q_expansion() # note that sage often uses an isomorphic number field
gp:mfcoefs(f, 20)
\( p \) |
Sign
|
\(2\) |
\( -1 \) |
\(3\) |
\( +1 \) |
\(5\) |
\( -1 \) |
\(7\) |
\( +1 \) |
\(13\) |
\( -1 \) |
Inner twists of this newform have not been computed.
Twists of this newform have not been computed.